Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
#самолеты
Ежегодно от работы авиационных двигателей в атмосферу попадает около 6-8 миллионов тонн оксидов азота. Это опасные загрязнители, образующиеся при сгорании топлива. Они не просто угрожают качеству воздуха, а планомерно воздействуют на верхние слои атмосферы, вызывая кислотные дожди, усиливая парниковый эффект и приводя к постепенному потеплению климата. Борьба с подобными выбросами ведется через ужесточение международных стандартов и технические инновации в двигателестроении. Ученые Пермского Политеха разработали оригинальный виртуальный измеритель концентрации окислов азота в камере сгорания, адаптированный под разные режимы полета самолета. Новый подход к построению системы на основе нейронной сети позволил на 82,8% повысить точность расчетов концентрации эмиссии газов.
Ежегодно по всему миру происходит до 60 извержений вулканов, пепел которых представляет серьезную угрозу для авиации. Это микроскопические частицы горной породы и стекла, которые накапливаются на элементах двигателя и способны привести к его полному отключению прямо во время полета. Попадание самолетов в вулканические облака строго контролируется авиационной безопасностью, однако такие случаи все-таки бывают. И несмотря на всю важность проблемы, вопрос последствий этого изучен не полностью. Ученые Пермского Политеха провели уникальное научное исследование и раскрыли, в каких случаях полет через пепел безопасен, а в каких он может привести к прогарам и разрушению лопаток газовой турбины. Результаты помогут усовершенствовать системы охлаждения отечественных силовых установок нового поколения.
На взлете самолета шум двигателей может достигать 110-150 децибел, в то время как для человеческого уха комфортным считается всего 20-40 децибел. Излишний шум способен воздействовать не только на слуховой аппарат, но и на работу сердечно-сосудистой и нервной систем, вызывать головные боли и повышенную утомляемость. Для уменьшения шума в авиации используются специальные звукопоглощающие конструкции. Ученые Пермского Политеха модернизировали один из их элементов, изменив физику течения воздуха, что позволило повысить поглощение звука конкретной конструкции с 85% до 90-95% на частотах 400-500 Гц и высоких уровнях звукового давления.
Оптоволокно — это тонкая нить, улавливающая малейшие деформации и передающая данные световыми сигналами. Его чувствительность полезна для мониторинга зданий, мостов, трубопроводов, а также для самодиагностики авиационных и космических деталей. Датчики на его основе обнаруживают микроповреждения, предотвращая разрушения. Ученый Пермского Политеха создал уникальный датчик в виде многожильного оптоволоконного кабеля со специальными чувствительными элементами. Изобретение удаленно выявляет сложные деформации в высоконагруженных композитных конструкциях с микронной точностью, повышая безопасность и долговечность критических объектов.
С ростом полетов значительно увеличиваются требования к надежности газотурбинных двигателей. Для обеспечения их долговечности и бесперебойной работы необходимо проводить строгие испытания внутренних систем, отвечающих за подачу топлива, регулирование давления и другие жизненно важные функции механизма. Все это требует больших временных затрат (от 500-600 до нескольких тысяч часов) из-за высокой сложности и стоимости оборудования. Обычно в ходе испытаний оператор вручную настраивает и контролирует различные параметры, но это может быть сопряжено с рисками ошибки и все еще требует немало времени. Ученые Пермского Политеха создали специальную отечественную программу, которая автоматизирует процесс и делает его не менее чем в 1,5 раза быстрее.
В конструкциях самолетов нового поколения (например, Boeing 787) доля современных композитных материалов, таких как углепластики, составляет около 50%. При этом композиты уязвимы к скрытым повреждениям, возникающим при столкновении с градом и камнями, падающими инструментами, при жестком приземлении. Такие дефекты опасны потому, что могут оставаться незамеченными, но при этом значительно снижать прочность материала, приводя к внезапным поломкам. Ученые Пермского Политеха провели исследование, чтобы понять, как удары влияют на механическое поведение композитов, и установили пороговую чувствительность — тот уровень повреждений, после которого начинается резкое снижение характеристик материала.
Газотурбинные двигатели — это сердце современной авиации. Их надежность и долговечность во многом зависят от прочности ключевых компонентов, таких как турбинные диски, которые работают в экстремальных условиях: под действием высоких температур, механических воздействий и циклических нагрузок. Ученые Пермского Политеха предложили модель, которая позволит определять эффективную для эксплуатации зеренную структуру диска. Их исследование показывает, что градиентное распределение размера зерен в материале может значительно повысить прочность и устойчивость дисков к усталости и разрушению.
Электроэрозионная обработка — одна из ключевых технологий создания элементов конструкций современных самолетов, выполненных из труднообрабатываемых материалов. Воздействие импульсов тока испаряет металл, за счет чего происходит процесс обработки сложных форм. Однако после на обрабатываемой поверхности формируется измененный слой, который по свойствам отличается от основного материала и содержит микротрещины. Это влияет на циклические характеристики всей детали и может привести к ее преждевременному разрушению. Ученые ПИШ Пермского Политеха разработали способ, который позволяет заранее прогнозировать формирование такого слоя и возникновение дефектов на поверхности в зависимости от применяемого режима электроэрозионной обработки.
Каждый год миллионы людей выбирают самолеты для деловых поездок и путешествий. Но что мы на самом деле знаем о том, как стальные птицы обеспечивают нашу безопасность и комфорт в небе? Эксперт Пермского Политеха рассказал, как устроено воздушное судно, что помогает ему преодолевать гравитацию, в какой части авиалайнера безопаснее при турбулентности, как крылатую машину защищают от непогоды и молний, что произойдет, если не включить авиарежим на телефоне, почему нельзя открывать окно и что скрывает «черный ящик».
Сгорая, топливо выделяет тепловую энергию, благодаря которой работают газотурбинные двигатели. Для того, чтобы оно сжигалось хорошо, его нужно тщательно перемешать с воздухом. Подогрев помогает сделать это быстрее и эффективнее. Это особенно важно при использовании бедных смесей, в которых воздуха больше, чем топлива, из-за чего оно может сгореть не полностью и двигатель будет работать хуже. Однако существующие методы подогрева приводят к выбросам углекислого газа и оксида азота, которые в больших количествах вредны для здоровья человека и окружающей среды. Ученые Пермского Политеха исследовали процессы, происходящие при подогреве топливного газа, и выяснили, что лучше делать это перед камерой сгорания двигателя — так выброс вредных веществ снизится на 24 процента для угарного газа.
В аэрокосмической, автомобильной промышленности и морском транспорте активно применяют материалы на основе полимерной смолы с добавлением углеродных волокон. Из них делают ответственные конструкции, которые из-за особенностей эксплуатации постоянно подвергаются ударам. Примером такого ущерба может быть столкновение самолета с ледяными частицами, жесткое приземление. Ученые Пермского Политеха исследовали, как разная энергия ударов о полимерные углепластики влияет на их дальнейшую «склонность» к разрушению. Это позволит более точно проектировать конструкции из этих композитов и учитывать их стойкость к ударам.
Новая конструкция топливных форсунок авиационных воздушно-реактивных двигателей с системой охлаждения без применения и с применением электростатических полей от ученых КНИТУ-КАИ имени А. Н Туполева и Центрального института авиационного моторостроения имени П .И. Баранова предотвратит образование в них твердого углеродистого осадка. Конструктивные схемы включают наружную рубашку охлаждения с каналами особой геометрии.
Один из наиболее опасных и трудно прогнозируемых дефектов материалов — усталостное повреждение, то есть разрушение в результате повторяющихся нагрузок. Ему подвержено большинство деталей механизмов и конструкций, от опор линий электропередач до фюзеляжей самолетов. Для определения характеристик таких трещин можно использовать нейронные сети. Чтобы сеть работала корректно, необходимо правильно откалибровать видеосистему. Ученые НИЦ «Курчатовский институт» — ВИАМ предложили способ такой калибровки, основанный на нанесении реперных меток в виде штрихкодов на поверхность образца.
Инженеры Федеральной политехнической школы Лозанны (Швейцария) сконструировали мультимодального робота, который может не только взлетать, но и ходить, и прыгать, как птицы. Крылатый дрон способен так же легко, как пернатые, перемещаться как в наземной, так и в воздушной среде. При этом за мощные ноги ему не надо расплачиваться дополнительным весом — это позволит найти новые решения для взлета беспилотников и самолетов в сложных условиях.
При длительном воздействии авиационный шум вызывает проблемы с органами слуха, повышение артериального давления, раздражительность и усталость. Существенному воздействию вблизи аэропортов подвергается около трех процентов россиян. Чтобы снизить его — применяют шумоглушащие сопла. Ученые Пермского Политеха выяснили, какая конструкция заглушает максимальное количество шума на низких и высоких частотах.
В последние годы научные исследования в области аэродинамики становятся все более актуальными с учетом развития высокоскоростных летательных аппаратов. Новое численное исследование, проведенное командой российских ученых из МФТИ и Центрального аэрогидродинамического института имени профессора Н. Е. Жуковского (ЦАГИ), стало важным шагом к более глубокому пониманию сложных процессов, которые протекают в пограничном слое в условиях сверхзвукового потока.
Определение массы самолета и его отдельных агрегатов — важнейшая задача проектирования. Во-первых, снижение веса летательного аппарата позволяет ощутимо поднять экономичность и улучшить летные характеристики. Во-вторых, даже незначительные погрешности в весовом проектировании приводят к проигрышу в топливной эффективности и невозможности самолета выполнять свои задачи. В МАИ разработали цифровую весовую платформу, которая позволяет вести расчет, контроль и анализ массово-инерционных характеристик на всех этапах жизненного цикла изделия. Платформу можно применять не только на аэрокосмическом производстве, но и в других высокотехнологичных отраслях промышленности.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Последние комментарии