Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Обучение с подкреплением позволило лучше работать генеративным потоковым нейросетям
Ученые Центра ИИ и Института искусственного интеллекта и цифровых наук факультета компьютерных наук НИУ ВШЭ применили классические алгоритмы обучения с подкреплением для настройки генеративных потоковых сетей (GFlowNets). Это позволило улучшить работу GFlowNets, которые применяются уже три года для решения сложнейших научных задач на этапах моделирования, генерации гипотез и экспериментального проектирования.
Результаты работы вошли в пять процентов лучших публикаций на Международной конференции по искусственному интеллекту и статистике AISTATS, которая состоялась 2–4 мая 2024 года в Валенсии.
Генеративные потоковые сети (GFlowNets) — это метод в машинном обучении, который помогает создавать разнообразные и качественные образцы данных благодаря тому, что настраивает модель генерировать вариативные объекты с высокими наградами. Их начали внедрять в 2021 году, и с тех пор они применяются в различных областях: в обучении языковых моделей, в комбинаторной оптимизации (например, составлении сложных расписаний), дизайне печатных плат, моделировании молекул лекарств с заданными свойствами и прочее.
«Устройство GFlowNets можно описать на примере конструктора лего: по недостроенному объекту и набору доступных деталей модель будет пытаться предсказать, в какое место и с какой вероятностью нужно добавить деталь, чтобы по итогу мы могли с большой вероятностью собрать хороший макет машины или корабля», — объясняет Никита Морозов, стажер-исследователь Центра глубинного обучения и байесовских методов Института искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ.
Обучение с подкреплением (Reinforcement Learning, RL) — одна из парадигм машинного обучения, в которой агент обучается взаимодействовать со средой с целью максимизации функции награды. Классическая модель, построенная на основе обучения с подкреплением, AlphaGo, — первая в мире программа, победившая в настольную игру го профессионального игрока.
Генеративные потоковые сети и обучение с подкреплением схожи тем, что в качестве обучающего сигнала получают функцию награды. Однако GFlowNets пытается не максимизировать награду, а обучиться генерировать объекты с вероятностями, пропорциональными награде.
Ученые Центра ИИ и Института искусственного интеллекта и цифровых наук факультета компьютерных наук НИУ ВШЭ впервые показали, что задача обучения генеративных потоковых сетей максимально схожа с общей задачей обучения с подкреплением, а также применили специализированные методы обучения с подкреплением для генерации дискретных объектов, например молекулярных графов.
Алексей Наумов, научный руководитель Центра ИИ, директор по фундаментальным исследованиям Института искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ : «Мы показали, что классические алгоритмы обучения с подкреплением применительно к GFlowNets работают сравнимо и даже эффективнее известных современных подходов, разработанных специально для обучения этих моделей. Так, в рамках задачи моделирования молекул лекарств с заданными свойствами за время обучения нашего метода было сгенерировано на 30 процентов больше высококачественных молекул, чем у существующих методов».
Исследователи подчеркивают, что использование существующих методов обучения с подкреплением для обучения GFlowNet напрямую, без дополнительной адаптации этих методов, позволит ускорить прогресс развития новых методов в медицинской химии, материаловедении, энергетике, биотехнологиях и во многих других областях, где GFlowNet нашли применение за три года существования. Исследование поддержано грантом для исследовательских центров в области искусственного интеллекта, предоставленным Аналитическим центром при Правительстве России.
Исследователи НИУ ВШЭ проанализировали, насколько эффективно мировой рынок генеративного искусственного интеллекта превращает инвестиции в реальные доходы, и пришли к выводу: сегодня искусственный интеллект развивается быстрее, чем окупается.
В 1980-х годах большую популярность приобрела борьба с озоновыми дырами. Из-за нее хладагенты из хлорфторгулеродов заменили на аналоги из гидрофторуглеродов. Теперь ученые выяснили, что эта замена — как и следующие за ней, уже в рамках борьбы с глобальным потеплением — ведет к накоплению в атмосфере довольно опасных «вечных химикатов».
Как показали последние достижения биомолекулярной археологии, предметы могут сохранять молекулы, предоставляющие информацию о запахах, которые связаны с медицинскими, парфюмерными, ритуальными практиками древности. Международная команда ученых специально для выставки в музее Августа Кестнера в Ганновере разработала технологию, которая позволяет восстанавливать запах по его молекулярному «отпечатку» из прошлого.
В 1980-х годах большую популярность приобрела борьба с озоновыми дырами. Из-за нее хладагенты из хлорфторгулеродов заменили на аналоги из гидрофторуглеродов. Теперь ученые выяснили, что эта замена — как и следующие за ней, уже в рамках борьбы с глобальным потеплением — ведет к накоплению в атмосфере довольно опасных «вечных химикатов».
Специалисты УКБ №1 имени С.Р. Миротворцева СГМУ имени В.И. Разумовского провели успешное эндоскопическое удаление крупного кровоточащего новообразования толстой кишки у ребенка без разреза, через просвет кишки.
Ученые РГУ нефти и газа (НИУ) имени И. М. Губкина и Института проблем управления имени В.А. Трапезникова РАН (ИПУ РАН) создали технологию экспресс-анализа качества природного газа. Впервые для этих целей была разработана нейросеть, что позволило определить показатели качества пробы в режиме реального времени за несколько секунд вместо 20-40 минут традиционным способом — с помощью газовой хроматографии.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
