Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Новый субтерагерцевый анализатор поможет создать скоростные вычислительные устройства
Ученые из Института радиотехники и электроники РАН имени В. А. Котельникова, Московского физико-технического института и Национального университета Чунгбук представили концепт спектрального анализатора субтерагерцевого излучения. Разработка позволит выполнять настройку приборов в перспективном для скоростной вычислительной техники субтерагерцевом диапазоне. Это открывает возможности для проектирования систем нового технологического уклада — нейроморфных компьютеров, мобильной связи 6G, сканирующих устройств на атомарном уровне.
Ученые из Института радиотехники и электроники РАН им. В. А. Котельникова, Московского физико-технического института (Москва, Россия) и Национального университета Чунгбук (Чхонджу, Южная Корея) представили концепт спектрального анализатора субтерагерцевого излучения. Работа опубликована в журнале IEEE Transactions on Nanotechnology.
Актуальность разработки заключается в том, чтобы предложить научному и инженерному сообществу новый надежный инструмент для создания и калибровки компонентов высокопроизводительной электроники, которая работает в субтерагерцевом диапазоне. Эти частоты представлены в нижней части терагерцевого спектра — примерно от 100 гигагерц до одного терагерца. Раньше такое излучение называлось субмиллиметровыми волнами, или дальним инфракрасным излучением.
«Предложенный анализатор измеряет спектр субтеррагерцевого излучения. Простыми словами, он определяет, из каких простых сигналов состоит сложный входной сигнал. При этом внутри устройства находится генератор собственного излучения, который перестраивается в заданном диапазоне частот. В момент, когда частота собственного сигнала совпадает с частотой внешнего, можно наблюдать увеличение напряжения», — рассказала основной автор научной работы, инженер ИРЭ, магистрант кафедры твердотельной электроники, радиофизики и прикладных информационных технологий МФТИ Анастасия Митрофанова.
По словам специалиста, в предложенном анализаторе роль генератора выполняет источник колебаний — антиферромагнитный осциллятор. Он состоит из слоя немагнитного металла и антиферромагнитного слоя на нем. Антиферромагнетики — это особый класс веществ, в структуре которых есть маленькие магнитные области (домены). Они имеют противоположные направления намагниченности и компенсируют друг друга. Поэтому антиферромагнетики не притягивают металлы. Однако их используют в качестве осцилляторов, потому что они обладают высокой частотой колебаний.
«По слою немагнитного металла протекает постоянный ток высокой плотности, что приводит к вращению намагниченностей доменов антиферромагнетиков. В зависимости от плотности тока эти намагниченности вращаются быстрее или медленнее. То есть изменение плотности тока приводит к изменению частоты антиферромагнитного осциллятора. Поэтому можно перестраивать собственный сигнал генератора от более низких к более высоким частотам», — пояснила Анастасия Митрофанова.
Субтерагерцевый диапазон интересен тем, что позволяет реализовать высокоскоростные вычисления, поскольку чем выше частота устройства, тем быстрее оно работает. По сравнению с современными процессорами производительность субтерагерцевых устройств может быть выше в сотни раз. В будущем такие устройства будут полезны, например, при создании нейроморфных компьютеров.
Также с субтерагерцевыми частотами ассоциируют развитие широкополосных систем связи, что обусловлено их способностью передавать большие объемы данных на высоких скоростях. Это может способствовать развитию мобильных сетей шестого поколения и технологий интернета вещей. Вместе с тем в субтерагерцевом диапазоне находятся линии поглощения многих молекул, что делает его полезным для создания новых типов оборудования для спектроскопии и идентификации материалов. В том числе систем досмотра для обнаружения запрещенных веществ. Кроме того, возможности таких частот привлекательны для использования в медицине в качестве замены небезопасного рентгеновского излучения.
«Сложности в работе субтерагерцевыми частотами возникают из-за отсутствия эффективных источников и детекторов, которые работают в этом диапазоне. Тем не менее, поскольку эти частоты позволяют реализовать высокоскоростные вычисления, сейчас идет активная разработка механизмов для генерации, приема и расшифровки таких сигналов», — сообщила Анастасия Митрофанова.
Она отметила, что предложенный в рамках исследования концепт устройства на основе антиферромагнитного осциллятора позволяет достичь сопоставимых или более высоких скоростей определения частоты субтеррагерцевого сигнала по сравнению с существующими коммерческими аналогами.
При этом разработанная модель проще в изготовлении и эксплуатации. В частности, концепт, в отличие от альтернативных устройств на основе сверхпроводников (где также достигаются частоты в десятки и сотни гигагерц), позволяет создавать анализаторы, которые работают в обычных условиях при комнатной температуре.
«По мере развития электронные устройства становятся все более миниатюрными. При этом в них возрастает сопротивление материалов и увеличиваются потери энергии. Поэтому нужна электроника, которая не использует движение электронов. Одно из решений в этом направлении — это использование спина, магнитного момента электрона. В таких устройствах возникают те же эффекты, что и в электронных, но без потерь энергии, что открывает широкие перспективы для увеличения производительности электроники», — прокомментировал фундаментальные задачи научной работы Сергей Никитов, академик РАН, директор ИРЭ, профессор кафедры твердотельной электроники, радиофизики и прикладных информационных технологий МФТИ. По его словам, задача ученых — подготовить научную основу для разработки подобных устройств.
Зачем нужно изучать ядра планет? Как зарождалась эта наука и почему она важна? Что такое гамма-всплески и зачем нам знать, откуда они идут? Остается ли Россия великой космической державой и зачем вообще это всё надо? Об этом рассказывает Игорь Георгиевич Митрофанов, руководитель отдела ядерной планетологии Института космических исследований РАН, доктор физико-математических наук, академик Международной академии астронавтики.
Несмотря на отмену попытки «экономичной» ловли первой ступени, шестой испытательный полет Starship был успешным. Корабль — вторая ступень системы впервые продемонстрировала возможность маневра на орбите. Первая ступень после приводнения неожиданно для всех смогла пережить два взрыва, не утратив плавучесть. Среди наблюдавших за испытанием был Дональд Трамп.
Китайские исследователи удерживали изотоп иттербия-173 в состоянии «кота Шредингера» более 20 минут. Эта работа приблизила точность измерений фазового сдвига квантовой системы к теоретически возможному пределу.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Американские ученые проанализировали данные о поедании фекалий животными, чтобы выяснить, какие причины стоят за этим поведением и какие закономерности можно проследить. В результате они разделили всю выборку более чем из 150 видов на семь категорий по тому, что заставляет зверей питаться таким сомнительным продуктом.
Работать под началом шефа-абьюзера тяжело, но свежее исследование показало, что бывают варианты похуже. Ученые выяснили, что еще негативнее на моральный дух и производительность труда сотрудников влияет, когда во главе команды стоит самодур, у которого вспышки агрессии непредсказуемо сменяются этичным поведением.
Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии