Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Искусственный интеллект научили предсказывать поведение атомов
Множество ученых по всему миру объединились, чтобы составить и опубликовать всеобъемлющую дорожную карту разработки межатомных потенциалов машинного обучения в области материаловедения и инженерии. Они подробно описали, как машинное обучение должно привести к революции в нашем понимании в проектировании и открытии новых материалов, позволяя проводить компьютерное моделирование атомов.
Работа опубликована в журнале Modelling and Simulation in Materials Science and Engineering. Исследования российского коллектива ученых, который участвовал в составлении этой дорожной карты, выполнены при поддержке Российского научного фонда.
В течение десятилетий ученые полагались на численное моделирование, описывающее взаимодействия между отдельными атомами, чтобы с помощью этого научиться предсказывать свойства материалов и разрабатывать новые материалы с требуемыми характеристиками.
Межатомные потенциалы представляют собой математические функции, которые описывают, как атомы взаимодействуют друг с другом внутри молекулы или твердого тела. Они выражают потенциальную энергию системы как функцию положения атомов.
Точность и эффективность атомистического моделирования во многом зависят от качества используемых межатомных потенциалов. Традиционные потенциалы часто изо всех сил пытаются сбалансировать вычислительную эффективность с точностью, необходимой для достоверного представления сложных атомных взаимодействий.
Традиционные физические потенциалы, основанные на упрощенных математических моделях (таких как потенциалы Леннарда-Джонса или метод погруженного атома), сталкиваются с множеством ограничений. Они часто хорошо работают для конкретных материалов, но не позволяют точно предсказать поведение новых материалов, а также могут перестать работать при изменении внешних условий.
Разработка таких потенциалов велась методом подгонки параметров. Сначала выбираются целевые свойства (как правило, энергии взаимодействия и силы на атомы, иногда еще — параметры решетки, модуль упругости), которые должны описывать новый потенциал. Затем подходящая форма потенциала выбирается на основе того, как устроен сам материал на микроуровне. Параметры оптимизируются таким образом, чтобы минимизировать отклонения в предсказаниях от целевых значений. Затем потенциал проверяется на соответствие дополнительным свойствам и уточняется посредством итеративных корректировок. Окончательное тестирование в различных конфигурациях подтверждает его надежность, давая практическое приближение атомных взаимодействий.
В последние годы в области материаловедения наблюдается всплеск развития межатомных потенциалов на основе машинного обучения. Эти потенциалы используют огромные наборы данных и передовые алгоритмы для изучения сложных атомных взаимодействий непосредственно из результатов экспериментов. Для создания баз данных атомных структур используют моделирование на основе метода функционала плотности, а затем машинное обучение применяется к этим полученным данным.
В машинном обучении для межатомных потенциалов применяют несколько различных методов: искусственные нейронные сети, модели гауссовских процессов, глубокое обучение нейронных сетей и использование физических принципов. По сравнению с традиционными потенциалами, потенциалы машинного обучения дают более высокую точность предсказаний, большую универсальность (применимость для различных материалов и условий), при этом имеют сравнимую скорость расчетов свойств.
Международная группа исследователей, осознавая перспективы нового подхода, приступила к созданию всеобъемлющего руководства по разработке и применению этих мощных инструментов. Их недавняя научная работа, построенная как дорожная карта, исследует различные аспекты, связанные с разработкой потенциалов машинного обучения, выявляет существующие пробелы и предлагает будущие направления для повышения их производительности и применимости.
Дорожная карта состоит из нескольких частей. Это базы данных, межатомные потенциалы на основе искусственных нейронных сетей и других методов машинного обучения, решение вычислительных проблем, графические потенциалы глубокого обучения на основе теории графов, моментные тензорные потенциалы, универсальные нейронные межатомные потенциалы, физически обоснованные потенциалы, потенциалы для сплавов со сложным составом, предварительно обученные потенциалы, учет сложности высокоэнтропийных материалов.
Группа российских ученых из МФТИ и Сколтеха в этой дорожной карте сделала обзор использования потенциалов моментов инерции, которые разработали они сами. Исследователям удалось с высокой точностью решить такие задачи, как расчет теплопроводности сложных частично заполненных скуттерудитов, теплопроводности двумерных материалов и гетероструктур на основе них, осуществить прямое молекулярное моделирование диффузии точечных дефектов, найти кристаллические структуры бора с количеством атомов в одной ячейке до сотни штук, построить кривые плавления. Ученым удалось показать, что их потенциалы не уступают существующим мировым аналогам по точности, а по производительности их превосходят.

Визуализация обучения на локальных окружениях атомов. Область, выделенная красным кругом, содержит атомы с наивысшей степенью экстраполяции, которые затем вырезаются из структуры и используются для построения периодической конфигурации и дальнейших расчетов энергии, сил и напряжений по методу теории функционала плотности / © Advanced theory and simulations
Дмитрий Корогод, студент МФТИ, участвующий в исследовании, отметил: «Машинно-обучаемые межатомные потенциалы на базе потенциалов моментов инерции дали возможность построить автоматизированный и точный подход к ускорению квантово-механических расчетов. Для оптимизации их производительности следует разрабатывать эффективную реализацию для GPU, добавить рассмотрение дальнодействующих взаимодействий и усовершенствовать методологии создания баз данных для моделирования. Кроме того, интеграция экспериментальных данных обещает дальнейшее повышение точности и применимости машинно-обученных межатомных потенциалов».
Ключевым достоинством разработки российских ученых является возможность адаптации потенциала на так называемых «локальных окружениях». В процессе симуляции масштабных систем, насчитывающих сотни тысяч атомов, моментно-тензорный потенциал способен выявлять атомы, расчет параметров которых вносит погрешность или выполняется некорректно.
Далее происходит следующее: «окружение» проблемного атома выделяется, и его энергия вычисляется с использованием методов квантовой химии. Эти данные затем включаются обратно в обучающий набор, что позволяет потенциалу «дообучиться» и повысить свою точность. После такой «точечной» настройки расчет свойств системы продолжается, пока не возникнет необходимость в аналогичной корректировке.
Важно отметить, что другие известные машинно-обучаемые потенциалы не обладают возможностью обучения на отдельных фрагментах сложных систем. Это существенное ограничение сказывается на их точности и сужает область применимости. Российский метод, напротив, позволяет проводить калибровку «на лету», значительно повышая надежность и предиктивную силу симуляций.
Межатомные потенциалы машинного обучения могут ускорить открытие новых материалов с желаемыми свойствами для конкретных применений, моделировать и оптимизировать такие производственные процессы, как сварка и термообработка, помочь предсказать срок службы и производительность материалов.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
Палеонтологи описали крупнейшее в мире скопление следов динозавров: более 16 000 вмятин на площади 7500 квадратных метров. Ученые считают, что эта территория была не просто местом случайных прогулок, а оживленной трассой, где динозавры организованно мигрировали вдоль берега древнего озера.
Биологи опровергли представление о примитивности органов чувств у древнейших бесчелюстных, обнаружив у миксин огромный арсенал рецепторов для поиска добычи. Исследователи доказали, что способность различать сложные запахи и аминокислоты появилась у общего предка позвоночных задолго до возникновения челюстей.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
