Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Математики ТГУ создадут алгоритмы для раннего выявления эпидемий
Ученые ММФ ТГУ в рамках проекта, поддержанного РНФ, разрабатывают математические методы анализа и противодействия распространению эпидемий, включая Covid-19. Исследователи создают новые эффективные высокоскоростные методы обработки информации для статистического анализа в эпидемиологических моделях. Новые алгоритмы позволят обеспечить оперативное принятие управленческих решений, необходимых для локализации эпидемий, снижения социальных рисков и экономических потерь.
«В настоящее время момент начала эпидемии определяется, исходя из пересечения эпидпорогов по тому или иному заболеванию, – говорит один из исполнителей проекта, доцент ММФ ТГУ Евгений Пчелинцев. – Несовершенство этого подхода заключается в том, что раннее начало эпидемии с его помощью отследить невозможно. Бывает, что порог формально не превышен, а эпидемия уже началась.
Далее нарастание количества заболевших идет «по экспоненте» и сдерживающие меры, например, в виде карантина, уже не дают того эффекта, как при раннем выявлении эпидемии. С подобной ситуацией, к примеру, в начале пандемии столкнулась Италия. Своевременное принятие мер могло бы значительно снизить социальные и экономические потери».
Разрабатываемые алгоритмы будут анализировать информацию из медицинских баз. Главным фактором для отслеживания станет изменение вероятностной природы исследуемых статистических данных. Это позволит улавливать моменты, не заметные для человека, в которые происходит изменение распределения данных, их структуры и так далее.
«Вероятностно-статистические методы будут оценивать динамику разных характеристик, и то, насколько сильно они изменились в вероятностном смысле, – говорит Евгений Пчелинцев. – Если изменение одного показателя значимо, либо поменялась совокупность, соответствующий алгоритм подаст сигнал тревоги, за которым должны последовать организационные решения. Какими они будут, решают контролирующие организации».
Как отмечает ученый ТГУ, использование разработанных адаптивных и робастных методов в практическом эпиданализе поможет на порядок улучшить надежность и качество статистических выводов. Согласно ТЗ проекта, точность работы модели должна составлять не менее 95 процентов. Добавим, что созданные алгоритмы будут работать как для ранее известных инфекций, так и новых заболеваний. Наряду с определением момента начала эпидемии математические методы анализа, созданные в ТГУ, позволят оценивать эффективность используемых мер и принимать решение об их ослаблении либо ужесточении.
Алгоритмы будут реализованы в виде программного продукта, который смогут использовать Роспотребнадзор и другие органы контроля и исполнительной власти, принимающие решения о защитных мерах по снижению социальных потерь в период эпидемий.
В реализации проекта наряду с основной группой, состоящей из сотрудников ММФ ТГУ, будут задействованы и другие специалисты, имеющие опыт в решении подобных задач, в том числе представители исследовательских групп лаборатории математики Рафаэля Салема (LMRS, Université de Rouen Normandie, Rouen, France), лаборатории математики и информатики Руанского института прикладных наук (LMI, INSA Rouen, France), лаборатории биологических исследований Гаврского университета (SEBIO, Université du Havre, Le Havre, France) и федерального научного центра гигиены имени Ф.Ф. Эрисмана (Роспотребнадзор). Исследования, поддержанные РНФ, проводятся под руководством профессора Руанского университета, ученого ММФ ТГУ Сергея Пергаменщикова.
Реализация данного проекта будет способствовать решению одной из приоритетных задач СНТР – противодействию техногенным, биогенным, социокультурным угрозам, терроризму и идеологическому экстремизму, а также киберугрозам и иным источникам опасности для общества, экономики и государства.
Международная команда специалистов во главе с сотрудниками Центра математического моделирования в разработке лекарств Первого МГМУ имени И. М. Сеченова выявила наиболее перспективные направления для исследований в области лечения аутоиммунных заболеваний. Команда первой провела систематический обзор для поиска всех опубликованных в научных работах математических моделей аутоиммунных патологий и выявила недостаток моделей, которые могут значительно ускорить разработку новых лекарств.
Американские ученые проанализировали данные о поедании фекалий животными, чтобы выяснить, какие причины стоят за этим поведением и какие закономерности можно проследить. В результате они разделили всю выборку более чем из 150 видов на семь категорий по тому, что заставляет зверей питаться таким сомнительным продуктом.
Работать под началом шефа-абьюзера тяжело, но свежее исследование показало, что бывают варианты похуже. Ученые выяснили, что еще негативнее на моральный дух и производительность труда сотрудников влияет, когда во главе команды стоит самодур, у которого вспышки агрессии непредсказуемо сменяются этичным поведением.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Принято считать, что естественный спутник Земли возник в результате ее столкновения с другой планетой, но к этой версии есть вопросы. Теперь ученые предложили рассмотреть сценарий возможного захвата Луны притяжением Земли из пролетавшей мимо двойной системы.
Ученые из Аргентины в серии экспериментов проследили за поведением домашних собак во время разногласий между членами семьи и выявили у четвероногих питомцев ряд характерных реакций на конфликт.
Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии