• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
18.04.2019
ФизТех
15 891

Идеальный лазерный материал прошел проверку

3.9

Недавно были обнаружены материалы, названные Вейлевскими полуметаллами, в которых носители заряда ведут себя подобно электронам и позитронам в ускорителях заряженных частиц. Ученые из МФТИ и Института Иоффе теоретически доказали, что эти материалы — идеальные усиливающие среды для лазеров.

Идеальный лазерный материал прошел проверку / ©indicator.ru

Работа опубликована в журнале Physical Review B.

Начало XXI века в физике — зачастую поиск явлений из мира элементарных частиц в подручных материалах. Электроны в некоторых кристаллах по своим свойствам будто разогнаны до околосветовых скоростей, как в ускорителях частиц, а в других они и вовсе могут напоминать по свойствам материю черных дыр.

Физики из МФТИ вывернули этот поиск наизнанку и доказали, что запрещенные реакции для элементарных частиц могут оставаться запрещенными и в кристаллических материалах — Вейлевских полуметаллах. Конкретно речь идет о реакции взаимного уничтожении частиц и античастиц без излучения света. Благодаря этому запрету Вейлевский полуметалл может оказаться идеальной усиливающей средой для лазера.

В полупроводниковом лазере излучение возникает при взаимном уничтожении электронов и положительно заряженных частиц — так называемых дырок. Однако излучение света при встрече электрона и дырки не является единственно возможным исходом.

Так, пара может отдать свою энергию на раскачку колебаний атомов или на нагрев остальных электронов. Последний процесс называется Оже-рекомбинацией (в честь французского физика Пьера Оже). Именно он ограничивает эффективность существующих лазеров видимого и инфракрасного диапазона и делает практически невозможным создание лазеров терагерцевого диапазона.

Действительно, Оже-рекомбинация «съедает» электрон-дырочные пары, которые иначе могли бы породить свет, к тому же она сильно греет полупроводник.

Поиск «волшебного материала», в котором Оже-рекомбинация идет медленно по сравнению с излучательной рекомбинацией, не прекращается на протяжении уже почти сотни лет. Путеводной в этом поиске является идея, высказанная Полем Дираком в 1928 году.

Он разработал теорию, которая предсказывала, помимо уже известного к тому времени электрона, существование его положительно заряженного двойника — позитрона, открытого всего четыре года спустя.

Согласно расчетам Дирака, взаимное уничтожение электрона и позитрона возможно только с испусканием света, но не с передачей энергии другим электронам. Именно поэтому поиск «волшебного лазерного материала» сводился в значительной степени к поиску аналогов дираковских электрона и позитрона в полупроводниках.

«В 1970-е годы надежды возлагались на соли свинца, в 2000-е — на графен. Однако и здесь, и там вскрывались отклонения свойств частиц в полупроводниках от идеи Дирака. Особенно нетривиальным оказался случай графена, где сжатие электронов и дырок в двумерную плоскость открывает возможность Оже-рекомбинации.

В двумерном мире частицам слишком тесно, сложно избежать столкновения. В своей работе мы показываем, что в Вейлевских полуметаллах аналогия с электронами и позитронами Дирака реализуется наиболее полно», — говорит руководитель исследования, заведующий лабораторией оптоэлектроники двумерных материалов Дмитрий Свинцов.

Идеальный лазерный материал прошел проверку
При взаимном уничтожении электронов и дырок происходит излучение / ©Елена Хавина / Пресс-служба МФТИ

Электрон и дырка в полупроводнике и правда похожи на электрон и позитрон из теории Дирака, хотя бы знаками заряда. Но этого недостаточно для запрещения Оже-рекомбинации. Необходимо, чтобы законы дисперсии электрона и дырки в полупроводнике совпали с таковыми для частиц Дирака.

Закон дисперсии — это зависимость кинетической энергией частицы от ее импульса. Она кодирует всю информацию о движении частиц и реакциях, в которые они могут вступать.

Для всех объектов в классической механике — камней, планет, космических кораблей — закон дисперсии является квадратичным. То есть увеличение импульса в два раза требует четырехкратного увеличения энергии.

Таким же закон дисперсии является в «обычных» полупроводниках — кремнии, германии, арсениде галлия. А вот для фотонов — переносчиков света — закон дисперсии является линейным. Отсюда сразу следует, что все фотоны движутся с одной скоростью — скоростью света.

Электроны и позитроны в теории Дирака объединяют свойства камней и фотонов: при малых энергиях их закон дисперсии квадратичен, а при больших — линеен. Однако «забросить» электрон на линейный участок закона дисперсии можно было только в ускорителе заряженных частиц.

Недавно были обнаружены материалы, которые можно образно назвать «карманными ускорителями» заряженных частиц. К ним относят графен — «ускоритель на кончике карандаша» и его трехмерные аналоги — полуметаллы Вейля (арсенид тантала, фосфид ниобия, теллурид молибдена).

В них закон дисперсии электронов и дырок является линейным уже начиная с бесконечно малых энергий. То есть переносчики тока ведут себя подобно фотонам с электрическим зарядом. Эти частицы также можно считать аналогами электрона и позитрона в теории Дирака, однако их масса стремится к нулю.

Авторы работы доказали, что запрет Оже-рекомбинации будет работать в полуметаллах Вейля, даже несмотря на нулевую массу частиц. Предвидя возражения о том, что закон дисперсии в реальных кристаллах всегда имеет более сложную форму, авторы пошли дальше и рассчитали вероятность «остаточной Оже-рекомбинации», появляющейся из-за отклонений закона дисперсии от линейного.

В зависимости от концентрации электронов эта вероятность, как оказалось, может быть на четыре порядка медленнее, чем в известных полупроводниковых материалах. То есть идея Дирака, по их расчетам, в этих материалах действительно работает с высокой точностью.

«Мы знакомы с горьким опытом предшественников, которые надеялись на точное воспроизведение закона дисперсии, предсказанного Дираком, в реальных кристаллах. Поэтому и сделали все возможное, чтобы выявить вероятные лазейки для Оже-процесса в этих новых материалах, полуметаллах Вейля.

Такие лазейки имеются — например, в реальном материале существует несколько „сортов“ электронов, которые отличаются скоростями. Медленные электрон и дырка могут сгорать, а быстрые — подхватывать энергию. Однако эта возможность, по нашим расчетам, является маловероятной», — добавляет Дмитрий Свинцов.

Получающееся время жизни электрон-дырочной пары оказалось около десятка наносекунд. В бытовом понимании это очень мало, но для лазерной физики — огромная величина. В привычных материалах, используемых в лазерных технологиях дальнего инфракрасного диапазона, электроны и дырки живут в тысячи раз меньше.

Возможность существенного продления времени жизни неравновесных электронов и дырок в новых материалах открывает перспективы для их использования в новых типах длинноволновых лазеров.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Позавчера, 12:38
Ольга Иванова

Американские исследователи узнали, что продолжительность жизни пенсионеров зависит не столько от наличия у них хронических заболеваний, сколько от таких простых факторов, как возможность ходить в магазин за продуктами, выполнять уборку в доме, показатели мелких частиц холестерина в крови и вредные привычки, которые они имели ранее.

11 часов назад
Сергей Васильев

Телескоп SOAR снял длинный хвост газа и пыли, образовавшийся в результате целенаправленного столкновения космического аппарата с Диморфом.

Вчера, 16:24
Михаил Орлов

Белки рыб, обитающих у дна океана под большим давлением, оказались защищены молекулами триметиламиноксида. Это соединение хорошо связывает воду и не позволяет биологическим молекулам терять правильную трехмерную форму и разрушаться.

1 октября
Сергей Васильев

Моделирование указало, как менялся путь формирования и распада суперконтинентов на протяжении истории Земли. Это позволило ученым предсказать, как и где образуется следующий из них, снова объединив практически всю сушу планеты.

Позавчера, 12:38
Ольга Иванова

Американские исследователи узнали, что продолжительность жизни пенсионеров зависит не столько от наличия у них хронических заболеваний, сколько от таких простых факторов, как возможность ходить в магазин за продуктами, выполнять уборку в доме, показатели мелких частиц холестерина в крови и вредные привычки, которые они имели ранее.

2 октября
Редакция

Итальянский ботаник Стефано Манкузо — о преимуществах естественных отношений и о том, что бывает, когда люди нарушают хрупкое равновесие между биологическими видами. Naked Science печатает отрывок из книги Манкузо La nazione delle piante («Нация растений»).

16 сентября
Алиса Гаджиева

Геродот в своей «Истории» утверждал, что блоки для пирамиды Хеопса и соседних пирамид доставляли по воде. Но сегодня от Нила до пирамид слишком далеко. Исследование кернов, взятых в пойме реки, позволило понять, как именно решался сложнейший вопрос транспортировки такого строительного материала.

15 сентября
Никита Логинов

Светодиоды потребляют намного меньше энергии, чем традиционные газоразрядные лампы, что должно сократить парниковые выбросы. Но при этом светодиодное освещение угрожает здоровью жителей и разрушает местные экосистемы в городах и селах.

6 сентября
Александр Березин

Нашей планете 4,5 миллиарда лет, и 539 миллионов лет на ней тянется эра «явной жизни» (фанерозой) — то есть такой, когда на планете есть крупные, высокоорганизованные животные. Сам собой возникает вопрос: быть может, среди них был разум?

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: