Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Физики приблизились к управлению химическими реакциями
Ученые разработали алгоритм для предсказания влияния внешнего электромагнитного поля на состояние сложных молекул. Это шаг к возможности наблюдать электронное движение и в перспективе управлять им.
Группа исследователей из МФТИ и Орхусского университета (Дания) разработала алгоритм на основе созданной ими ранее теории для предсказания влияния внешнего электромагнитного поля на состояние сложных молекул, а конкретно — для расчета скорости их туннельной ионизации.
Туннельная ионизация молекулы — процесс высвобождения электрона через потенциальный барьер, который удерживает его в молекуле. Этот шаг подводит ученых к возможности заглядывать внутрь больших многоатомных молекул, наблюдать электронное движение в них и в перспективе управлять им. Работа опубликована в журнале The Journal of Chemical Physics.
Применяя современные технологии, физики могут восстанавливать электронную структуру молекулы. Для этого используется излучение мощных лазеров. Ученые определяют структуру молекулы, анализируя спектры переизлучения и продукты взаимодействия молекулы с электромагнитным полем лазерного излучения.
Эти продукты — фотоны, электроны и ионы, которые образуются после ионизации или диссоциации (разрушения) молекулы. В предыдущих работах, в которых принимали участие ученые МФТИ из группы Олега Толстихина, было показано, что изучение взаимодействия молекул с сильным электромагнитным полем лазера приводит не только к пониманию электронной структуры молекулы, но и к возможности управления движением электронов в ней с аттосекундным временным разрешением.

Аттосекунда — это миллиардная часть миллиардной доли секунды. За это время свет лазера проходит расстояние менее десятитысячной доли микрометра, что соответствует размерам небольшой молекулы.
«Если поместить молекулу в поле сильного лазерного излучения, произойдет ее ионизация: электрон оторвется от молекулы. Двигаясь под действием переменного лазерного поля, электрон может в какой-то момент вернуться к родительскому молекулярному иону.
Результатом их взаимодействия может стать перерассеяние, рекомбинация электрона — или диссоциация молекулы. По этим процессам возможно восстановить картину электронного и ядерного движения в молекуле, что представляет огромный интерес в современной физике», — говорит Андрей Днестрян, член группы теоретической аттосекундной физики в МФТИ.

Сегодняшний интерес к туннельной ионизации объясняется ее ролью в экспериментах по наблюдению электронного и ядерного движения в молекулах с аттосекундным временным разрешением. Так, туннельная ионизация — первый шаг к отслеживанию перемещения электронов и «дырок» вдоль молекулы.
В перспективе это позволит управлять их движением, что поможет контролировать исходы химических реакций и откроет новые возможности в молекулярной биологии, медицине и других областях промышленности. Для успешного извлечения динамики в этих экспериментах необходимы точные и надежные расчеты скоростей туннельной ионизации.
Скорость туннельной ионизации можно интерпретировать как вероятность вылета электрона из молекулы в определенном направлении. Эта вероятность зависит от того, как ориентирована молекула по отношению к внешнему электромагнитному полю.
Существующие теории связывают скорость туннельной ионизации с поведением электронов вдалеке от ядер атомов, составляющих молекулу. Но современные программы квантово-механических расчетов и квантово-вычислительной химии не дают правильного предсказания состояния электронов в этой удаленной области.
«Недавно нам удалось переформулировать асимптотическую теорию туннельной ионизации так, чтобы скорость туннельной ионизации определялась только поведением электронов вблизи ядер. А это поведение может быть рассчитано достаточно точно существующими методами.
Существующие раньше подходы позволяли делать расчеты скоростей туннельной ионизации только для маленьких молекул с небольшим количеством атомов, теперь же это можно делать и для значительно более крупных. Чтобы это продемонстрировать, мы привели в своей работе расчеты для молекул бензола и нафталина», — рассказывает Андрей Днестрян.
Авторы работы рассчитали скорости туннельной ионизации для нескольких молекул в зависимости от их ориентации относительно внешнего поля. Они разработали программу, которая выполняет эти вычисления, и планируют сделать ее общедоступной.
Это позволит экспериментаторам быстро получать по наблюдаемым спектрам структуру исследуемых больших молекул с аттосекундным временным разрешением.
«Эта работа превращает развитую нами в 2011 году асимптотическую теорию туннельной ионизации в мощный метод расчета скоростей ионизации произвольных многоатомных молекул. Это необходимо для решения широкого круга задач физики сильного лазерного поля и аттосекундной физики», — говорит руководитель группы теоретической аттосекундной физики МФТИ Олег Толстихин.
Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.
Чтобы охотиться при температурах ниже нуля, пауки рода Clubiona выработали особые белки-антифризы. Изучив членистоногих, собранных в грушевых садах неподалеку от города Брно (Чехия), ученые раскрыли молекулярный механизм, позволяющий этим паукам не впадать в зимнюю спячку.
Наблюдая за галактикой CANUCS-LRD-z8.6 с помощью космической обсерватории «Джеймс Уэбб», астрономы обнаружили в ее центре сверхмассивную черную дыру. Хотя она существовала всего через 500 миллионов лет после Большого взрыва, ее масса оказалась рекордной для столь ранней эпохи.
Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
