Изменчивость бактерий в космосе объяснили гиперэкспрессией генов — Naked Science
05.11.2016
Редакция

Изменчивость бактерий в космосе объяснили гиперэкспрессией генов

Американские ученые показали, как меняется трансмембранная передача внеклеточных сигналов у бактерий в условиях микрогравитации. Результаты работы опубликованы в журнале PLoS ONE.

journal
©Wikipedia

Понимание того, как меняется поведение земных бактерий в условиях микрогравитации, важно для защиты космонавтов в длительных полетах. Например, известно, что в космосе бактерии могут производить больше вторичных метаболитов (витаминов и алкалоидов), становиться более вирулентными и устойчивыми к антибиотикам. По одной из версий, это связано с внеклеточной средой: уменьшение силы тяжести ограничивает способы переноса питательных веществ через мембрану. Но молекулярные механизмы таких нарушений остаются неясными.

 

Исследователи из Колорадского университета в Боулдере проверили теорию трансмембранной передачи на бактериях кишечной палочки (Escherichia coli). Для анализа использовались три группы бактерий, которые помещались в раствор с различным содержанием гентамицин сульфата (антибиотик) — 25, 50 и 75 микрограмм на миллилитр — на Земле и на борту Международной космической станции (МКС). После этого авторы сравнивали экспрессию генов (всего 4313 единиц) микроорганизмов в условиях нормальной и микрогравитации.

 

Модель изменения внутриклеточной среды в условиях микрогравитации. / © Luis Zea, PLoS ONE, 2016

 

Результаты показали, что некоторые гены у E. coli после помещения в раствор на МКС оказались гиперэкспрессированы минимум в десять раз. Более половины этих генов принадлежат двум семействам: thiEFGHS (в 2,2–32,4 раза) и hdeABD (в 2,6–29 раз). Гиперэкспрессия thiEFGHS указывает на повышенный синтез тиамина, который нужен для нормального углеводного обмена, и голодание клеток. В свою очередь гиперэкспрессия hdeABD связана с нарушением кислотно-щелочного баланса. Так, ген hdeA кодирует белок, который защищает бактерию от высокой кислотности.

 

Кроме того, ученые наблюдали гиперэкспрессию генов malE (до 36,07 раз) и lamB (до 30,5 раза), которые обеспечивают транспорт в клетку мальтозы (дисахарида). При этом в эксперименте источником углевода в растворе была глюкоза. Запуск этих генов может говорить о попытках бактерий при микрогравитации найти альтернативные источники питания. За счет гиперэкспрессии других генов (malK, oppAB, oppCDF, Dps, glnG) E. coli, вероятно, пытались ускорить получение энергии, компенсировать дефицит глюкозы и азота и защитить ДНК от повреждений.

 

Гены, которые гиперэкспрессировались на МКС. / © Luis Zea, PLoS ONE, 2016

 

Поскольку гиперэкспрессированными оказались также ряд генов (gadE), связанных с уровнем pH, исследователи попытались выяснить источник их гиперэкспрессии. Дело в том, что pH маркирует только кислотно-щелочной баланс раствора, но не всей окружающей среды. Однако показатель pH в растворах, которые использовались на Земле и на борту МКС, был идентичен. Это позволило предположить, что на бактерии влияла именно высокая кислотность в условиях микрогравитации.

 

«Микрогравитационная среда МКС используется во многих исследованиях, например связанных с разработкой вакцин. Она помогает искать новые мишени в антибиотикорезистентных патогенах, а также испытывать вещества, которые предназначены для борьбы с остеопорозом и раком. Понимание того, как внеклеточные биофизические процессы влияют на передачу сигналов у бактерий, важно не только для космонавтики, но и других областей», — сообщил соавтор работы Луис Зеа (Luis Zea).

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
8 часов назад
Александр Березин

СМИ всего мира принялись рассказывать, что новые штаммы возникли из-за ослабления ограничений, снятия масок, а то и под воздействием вакцин. Якобы те оказали эволюционное давление, заставляющее вирус обходить вакцинную защиту. Увы, реальная биология указывает на совсем иную — и более устрашающую — картину. Разбираемся в деталях.

30 июля
Мария Азарова

Генеральный конструктор «Энергии» и руководитель полета российского сегмента МКС Владимир Соловьев назвал причину незапланированного включения двигателей нового модуля «Наука», из-за которого станцию развернуло на 45 градусов.

31 июля
Василий Парфенов

Изучение загадочной короны черной дыры, образованной рентгеновским излучением, преподнесло интересное открытие. Космические телескопы XMM-Newton и NuSTAR смогли «увидеть» свет, отраженный веществом сразу позади невероятно массивного объекта. И хотя это очередной раз подтверждает общую теорию относительности, про основной объект исследований ученые почти не получили новых данных.

27 июля
Сергей Васильев

Окаменелости возрастом более 3,4 миллиарда лет могут быть остатками микробов-архей, живших и выделявших метан у гидротермальных источников на дне ископаемого моря.

25 июля
Мария Азарова

Ученые подтвердили связь между коронавирусной инфекцией и снижением когнитивных способностей на основе анализа данных более чем 81 тысячи человек.

28 июля
Мария Азарова

Член Северо-Западной организации Федерации космонавтики России Александр Хохлов рассказал о проблемах, сопровождающих модуль «Наука» на пути к МКС, и объяснил, почему на долгожданную стыковку будет всего одна попытка.

25 июля
Александр Березин

До массовой термоядерной энергетики 20 лет — и всегда будет 20 лет. Это незатейливая шутка сама стала старой еще 20 лет назад. Общество расстраивается от того, что термояд все никак не могут вывести на промышленный уровень. И лишь Илон Маск считает, что термоядерный реактор вовсе не нужен. Внимательный анализ показывает, что он прав. Даже если все технические проблемы термоядерной энергетики чудесным образом разрешатся, у нее не будет шансов вытеснить конкурентов. Как так вышло, и что тогда спасет человечество от энергетического кризиса?

13 июля
Ольга Иванова

Международная команда ученых идентифицировала ДНК из почвы в грузинской пещере. Благодаря этому исследователям удалось восстановить геном человека возрастом 25 тысяч лет, не имея никаких скелетных останков.

8 июля
Василий Парфенов

Подросток из бельгийского города Остенде стал вторым самым юным обладателем высшего образования в обозримой истории. Он с отличием окончил курс физики в Антверпенском университете и теперь собирается защитить магистерскую степень, а затем и докторскую диссертацию в этой области. Цель у него простая и понятная: увеличение продолжительности жизни человека вплоть до полного бессмертия за счет замены частей тела и органов механическими или искусственными.

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Подтвердить?
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: