Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Электронный торнадо: как физики научились «читать» послания молекул в лазерном вихре
Международный коллектив ученых из Университета Нагои, Университета электрокоммуникаций в Токио и МФТИ разработал уникальный метод, позволяющий с беспрецедентной точностью расшифровать один из самых фундаментальных квантовых процессов — туннельную ионизацию молекулы водорода в сверхмощном лазерном поле. Исследователям впервые удалось одновременно измерить две ключевые и ранее ускользавшие от прямого определения величины: реальную напряженность электрического поля лазера, действующего на молекулу, и ее эффективную энергию ионизации. Этот прорыв, основанный на анализе трехмерных «пончикообразных» распределений выбитых фотоэлектронов по импульсу, превращает сложное явление в высокоточный измерительный инструмент и закладывает основу для нового направления в науке — количественной туннельной электронной спектроскопии, способной отслеживать сверхбыстрые процессы в веществе.
В сердце современной физики и химии лежит квантовая механика с ее парадоксальными, но реальными явлениями. Одно из них — туннелирование, способность частицы, например электрона, проходить сквозь энергетический барьер, который в классическом мире был бы для нее непреодолим. Когда на атом или молекулу направляют импульс сверхмощного лазера, его электрическое поле становится настолько сильным, что искажает атомный потенциал, создавая такой барьер. Электрон может «протуннелировать» сквозь него и вырваться на свободу — этот процесс называется туннельной ионизацией. Если использовать лазерный импульс с круговой поляризацией, где вектор электрического поля вращается, то вылетевший электрон подхватывается этим вихрем и его итоговое распределение по импульсу приобретает форму тора, или, проще говоря, «пончика».
Геометрия этого электронного тора — его радиус и толщина — несет в себе богатейшую информацию о самой молекуле и процессе ионизации. Однако расшифровать это «послание» было крайне сложно из-за одной фундаментальной проблемы: ученые не могли с достаточной точностью определить, какова реальная напряженность электрического поля лазера в тот самый фемтосекундный миг взаимодействия с молекулой. Эта неизвестная величина была своего рода шифром, который не позволял прочитать скрытые в импульсном распределении фотоэлектронов данные.

Команда физиков поставила перед собой задачу взломать этот код. Они хотели найти способ извлечь из одного и того же экспериментального измерения и информацию о молекуле, и точное значение воздействующего поля. В качестве объекта исследования ученые выбрали простейшую молекулу — водород (H₂). Исследователи использовали передовую экспериментальную установку, способную регистрировать трехмерные импульсы всех частиц, рождающихся в результате взаимодействия лазера с молекулой. Этот метод, известный как реакционный микроскоп или 3D-визуализация импульсов по совпадениям, работает как сверхскоростная камера для субатомного мира, позволяя после каждого лазерного выстрела восстановить полную кинематическую картину процесса. Результаты исследования опубликованы в журнале Physical Review Research.
Ключевой прорыв получилось достичь благодаря сочетанию высокоточного эксперимента и глубокого теоретического анализа. Исследователи поняли, что радиус электронного тора и его толщина по-разному зависят от двух неизвестных — напряженности поля и энергии ионизации. Разработав усовершенствованную теоретическую модель, которая учитывает тонкие неадиабатические эффекты (связанные с тем, что поле лазера вращается, а не остается статичным), они получили систему из двух независимых уравнений. Измеряя в эксперименте геометрию тора — его радиус и толщину, — они смогли решить эту систему и впервые однозначно определить обе искомые величины.

Полученные данные не только показали, что эффективная энергия ионизации водорода в сильном поле заметно отличается от своего стандартного значения, но и выявили еще более тонкий эффект. Оказалось, что эта энергия разная для двух разных сценариев распада: когда молекула водорода просто теряет электрон, превращаясь в ион H₂⁺, и когда она разрывается на два протона и электрон (H⁺ + H).
Олег Толстихин, ведущий научный сотрудник Международного центра теоретической физики им. А.А.Абрикосова МФТИ, прокомментировал: «Мы превратили давнюю проблему в ее же решение. Десятилетиями неизвестная напряженность лазерного поля была своего рода завесой, скрывавшей от нас детальную информацию о поведении молекулы. Наш метод использует форму распределения фотоэлектронов по импульсу — этот самый тор, — чтобы одновременно измерить и само поле, и отклик молекулы на него. Мы буквально поднимаем эту завесу, превращая туннелирование в точный инструмент для изучения молекул на их естественных, аттосекундных временных масштабах».
Новый подход — настоящий прорыв, поскольку он переводит область исследований сильного поля из качественной в количественную. Вместо того чтобы говорить «распределение импульсов похоже на тор», ученые теперь могут с высокой точностью, до сотых долей атомной единицы, измерять фундаментальные параметры, закодированные в его форме. Это открывает дорогу для количественной визуализации сверхбыстрой динамики более сложных молекул, например, в ходе химической реакции, когда перестраиваются электронные орбитали и рвутся химические связи.
Полученные результаты имеют огромное значение как для фундаментальной науки, так и для будущих технологий. Они предоставляют мощный инструмент для проверки и уточнения самых современных теорий взаимодействия света с веществом. В перспективе эта методология может быть использована для создания «молекулярных фильмов» — покадровой съемки химических реакций с временным разрешением в десятки аттосекунд (аттосекунда — это 10^(-18) секунды). Это позволит не просто наблюдать за химией, но и потенциально управлять ею с помощью света, открывая новые горизонты в материаловедении, фотонике и биохимии.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
Вокруг звезды HD 131488, расположенной в созвездии Центавра (Centaurus) на расстоянии около 152 световых лет от Земли, впервые зафиксировали следы монооксида углерода (CO), который образуется при столкновениях и испарении комет. Находка открывает новую страницу в изучении формирования планетных систем.
Палеонтологи описали крупнейшее в мире скопление следов динозавров: более 16 000 вмятин на площади 7500 квадратных метров. Ученые считают, что эта территория была не просто местом случайных прогулок, а оживленной трассой, где динозавры организованно мигрировали вдоль берега древнего озера.
Биологи опровергли представление о примитивности органов чувств у древнейших бесчелюстных, обнаружив у миксин огромный арсенал рецепторов для поиска добычи. Исследователи доказали, что способность различать сложные запахи и аминокислоты появилась у общего предка позвоночных задолго до возникновения челюстей.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно