• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
12.06.2021
Николай Цыгикало
20
50 994

Сопло Лаваля — машина, создающая сверхзвук

4.4

Грохот уходящих в космос ракет, гигантские столбы огня, колоссальная сила, превосходящая силу тяжести. Форсажный рев боевых самолетов. Самое громкое и мощное силовое устройство человека. Все это — канал особой формы и особых свойств, радикально изменивший человечество. В чем его суть и как происходит трудное рождение сверхзвука — читайте в нашем материале.

Запуск ракеты-носителя Протон-М со спутником «Электрон-Л» с космодрома Байконур 24 декабря 2019 г. Фото: Роскосмос.
Запуск ракеты-носителя Протон-М со спутником «Электрон-Л» с космодрома Байконур 24 декабря 2019 г. Фото: Роскосмос. / Автор: Никита Тарасов

Эволюционная история сопла

Когда человек впервые использовал сопло? Уже в I веке Герон Александрийский предложил реактивное сопло для своего «эолипила». В нем два разнонаправленных паровых сопла вращали полый металлический шар реактивной силой. Спустя 1200 лет в Китае делали пороховые ракеты — для фейерверков и боевые, — освоив реактивное движение на практике. В Средние века боевые ракеты стали летать в Европе. В российской армии ХIX века ракетное оружие выросло до регулярных пеших и конных ракетных команд, запускавших ракеты со специальных пусковых станков; массовых ракет на флоте, больших ракетных заводов типа крупнейшего в Европе завода в Николаеве. Первый пуск боевых ракет из подводного положения ракетной подлодки произошел еще при жизни Пушкина, 29 августа 1834 года, на Неве, в 40 верстах выше Санкт-Петербурга.

Сопло — устройство для разгона потока жидкости или газа. Зачем его разгонять? В одних случаях нужен сам быстрый поток, используемый дальше. В других нужен не поток, а сила, возникающая при его выбросе, — реактивная. Такое силовое сопло называют реактивным. Именно реактивные сопла были практически освоены первыми с возникновением первых ракет.

Одновременно с широкой эксплуатацией ракет паровая техника конца ХIX века дошла до паровых турбин, которыми вращались винты судов. Для обтекания лопаток турбин требовалась высокоскоростная струя, и чем быстрее была скорость паровой струи, тем большую силу она создавала на лопатках турбины, повышая ее мощность. Сопло здесь требовалось не для реактивной силы (которая, конечно, тоже возникала, но как побочный, неиспользуемый эффект), а для создания потока большой скорости. Через него энергия, брошенная соплом в виде массы пара, попадет на лопатки и совершит на них работу, прокрутив с силой. Общее усилие лопаток передается на гребной винт.

Работая над высокоскоростным паровым соплом турбины, шведский инженер Карл Густав Патрик де Лаваль в 1890 году предложил принципиально новый тип сопла. Оно смогло разгонять поток до сверхзвуковых скоростей, чего раньше никогда не удавалось сделать. Так был перейден сверхзвуковой Рубикон, сразу удвоивший скорости истечения.

Сверхзвуковой Рубикон

И у сопел эолипила Герона, и у наконечника пожарного брандспойта (а это сопло для разгона струи воды) канал течения сужается. В таком канале поток рабочего тела – пара, газа или жидкости разгоняется. Почему? Расход (количество рабочего тела, проходящее через сечение за секунду) в любом месте канала одинаковый – сколько втекает через начальное сечение, столько должно и выйти через конечное. Ведь текущее по каналу вещество не уменьшается и не прибавляется, в стенках нет отверстий, подводящих или отводящих его. И закон сохранения массы делает одинаковым расход вещества через любое место сопла.

И жидкость, и дозвуковой поток газа практически не меняют своего объема, поэтому приближённо рассматриваются как несжимаемые, когда до скорости звука ещё далеко. Неизменный расход их массы означает неизменный расход их объема. Потоку приходится поторопиться, чтобы прогнать тот же объем через сузившееся место. Газ вынужден ускоряться.

Сверхзвуковые струи двигателей ракеты-носителя «Протон-М», пуск 31 июля 2020 года с космодрома Байконур. Фото: Роскосмос.

Течь его заставляет перепад давлений – поток течет в сторону низкого давления, толкаемый сзади высоким. В сужающемся канале непрерывно падают давление и температура потока, зато растет его скорость. Происходит перекачка потенциальной энергии давления и температуры газа в энергию движения, в его разгон. Чем выше перепад давлений между началом и срезом сопла, тем больше разгон и скорость истечения. Для ее роста поднимают давление перед соплом. Это же верно и для перепада температур, и газ стараются сильнее нагреть сжиганием топливных компонентов.

Но у скорости истечения оказался свой принципиальный предел. Это истечение со скоростью звука. Он не преодолевается никаким повышением давления на входе с сопло. Сколько бы его ни поднимали, в два, четыре или десять раз, в пределах сужающегося сопла поток не превысит скорость звука.

Вспомним, что такое дозвуковое и сверхзвуковое движение. Скорость звука (слабых волновых уплотнений в газе) зависит от многих факторов – состава газа, его плотности и давления. Но больше всего она зависит от температуры. В конкретных условиях скорость звука принимает конкретное местное значение. Сравнивает скорость потока с местной скоростью звука число Маха, деля скорость потока на скорость звука. Его значение обозначается М и показывает, во сколько раз скорость течения больше или меньше скорости звука. Когда М меньше единицы, поток медленнее звука – дозвуковой. При М=1 поток течет ровно со скоростью звука. При М > 1 поток сверхзвуковой.

Преодолеть звуковой рубеж можно, лишь используя особый принцип. Он называется принципом обращения воздействия.

В газодинамике есть понятие воздействия. Это влияние на течение газа, меняющее его параметры, в том числе скорость. Сужение канала – это геометрические воздействие, изменение геометрии течения. И есть принцип обращения воздействия. Согласно ему, одним и тем же воздействием можно изменять скорость течения только до скорости звука. Причем это верно как для разгона, так и для торможения (если поток сверхзвуковой). Максимум, достигаемый одним и тем же воздействием, всегда будет скоростью звука, М=1. Становясь непреодолимым для этого воздействия звуковым барьером. Больше этой границы воздействие любой мощности не сможет сделать ничего.

Пуск ракеты-носителя «Союз-2.1а» с грузовым кораблем «Прогресс МС-14». 25 апреля 2020 года, Байконур. Видно, как желтым пламенем снаружи потока догорает избыточный углерод на периферии реактивной струи в кислороде окружающего воздуха. Именно это наружное догорание делает струю такой яркой; в бескислородной атмосфере она бы не светилась и выглядела малозаметной серой лентой. Откуда на периферии соплового потока избыток углерода, и что еще видно на этих струях – здесь.  Фото: Роскосмос.

Чтобы перешагнуть за М=1 и продолжить разгон или торможение потока, нужно сменить воздействие на противоположное. При геометрическом воздействии (сужение канала) нужно сменить его знак. Для разгона это смена сужения на расширение. Где сменить, когда? После достижения потоком скорости звука. В расширяющейся части поток станет сверхзвуковым и будет разгоняться дальше. Почему?

Став сверхзвуковым, поток получает критически другие свойства. Дозвуковая несжимаемость сменяется на большую сжимаемость и расширяемость. Расширение газа столь велико, что обгоняет геометрическое расширение канала. Распухающий газ вынужден все быстрее протекать даже через растущие сечения канала. Поэтому скорость потока в сверхзвуковом расширении сопла возрастает, а плотность газа снижается. Лаваль предложил эту форму сопла и получил на выходе сверхзвуковой поток. А сопло с геометрией сужения-расширения назвали соплом Лаваля.

Пути достижения сверхзвука

Отметим, что разогнать поток до сверхзвука может не только меняющаяся геометрия сопла Лаваля. Возможны сверхзвуковые сопла с неизменной геометрией канала, просто с ровной трубой. Их три типа: массовое, тепловое и механическое. И все они работают по принципу обращения воздействия. Массовое сопло имеет продырявленные стенки. В дозвуковой части трубы через перфорацию стенок внутрь закачивается газ. Для прохода через трубу прирастающего количества газ ускоряется, достигая скорости звука. А после скорости звука воздействие меняется на противоположное – газ через отверстия в стенках откачивается из трубы. Что вызывает расширение (есть куда после откачки) и разгон остающегося в трубе газа. Для разгона потока меняется расход массы газа – поэтому сопло называется массовым.

Два других типа чисто теоретические. Тепловое сопло – при движении по неизменной трубе газ нагревается, достигая скорости звука. А после нее газ охлаждается со сверхзвуковым разгоном. Механическое сопло подводит энергию в газ силовым механическим воздействием, а за скоростью звука так же механически отводит энергию для разгона сверхзвукового потока.

Сопло Лаваля – частный случай принципа обращения воздействия, его геометрический аватар. Две противоположные воронки с общим узким местом. Именно такое сопло широко используют в практических делах. Поскольку достижение скорости звука радикально меняет поведение потока, скорость звука назвали критической скоростью. А сечение сопла (всегда наименьшее), в котором достигается скорость звука, назвали критическим сечением сопла.

В сужающейся дозвуковой части сопла плотность газа меняется незначительно, он расширяется мало. Зато существенно снижаются его давление и температура – скорость растет в основном за счет них. Круче всего эти параметры падают в критической части сопла, в зоне скорости звука. Смена воздействия сохраняет эти изменения потока и дальше, в сверхзвуковой части, добавляя расширение газа. Поэтому скорость потока непрерывно растет в обеих частях сопла – и дозвуковой, и сверхзвуковой.

Дозвуковой поток газа ведет себя течением реки, несжимаемой жидкостью, сохраняющей объëм. Абсолютно? Нет, по мере роста скорости воздух при обтекании тела понемногу сжимается, но незначительно; степень сжатия не превышает первых десятков процентов. Это принципиально не меняет картину обтекания, оставляя ее в рамках гидродинамики, или «гидродинамики для воздуха» – аэродинамики. Картина остается такой до звукового рубикона.

За скоростью звука лежит газодинамика. Здесь в полной мере проявляется сжимаемость газа: он сжимается и расширяется многократно, в разы и десятки раз. Это радикально меняет протекающие объемы и создает критические изменения в картине.

Сверхзвуковой поток ведет себя противоположно дозвуковому – в сужении он тормозится, а в расширении разгоняется. Если он тормозится, то делает это скачкообразно и мгновенно, всегда со сжатием объема и разогревом, образуя внутри себя резкие границы уплотнения. И, наконец, сверхзвуковой поток может течь в сторону высокого давления – например, в это самое уплотнение.

Течь навстречу перепаду давления сверхзвуковому потоку разрешает другая природа движущей силы. Преобладающим становится не давление газа, как в дозвуковом потоке, а сила инерции движения. Поведением дозвукового потока управляет тепловая сущность – потенциальная энергия давления газа, а сверхзвуковые свойства потока создает другая форма энергии – кинетическая энергия движения.

Осиная талия и перерасширение

Классические сопла ракетных двигателей – это воронкообразные сужения и расширения с узкой осиной талией между ними. Узкая она благодаря большой плотности в камере сгорания. Сжатый газ может расширяться во много раз, все еще сохраняя ощутимое воздействие на стенки сопла и создавая тягу. Основное расширение начинается при подходе к скорости звука и продолжается во всей сверхзвуковой части сопла. В которой отношение конечной площади к начальной, то есть площади среза сопла и критического сечения, назвали степенью расширения сопла. Насколько можно расширять (и значит разгонять) газ внутри сопла? В космосе разреженность потока на срезе сопла доводят до практически извлекаемой пользы – пока добавка тяги на продлении сопла оправдывает прирост его массы. Неиспользованные остатки давления сбрасываются в пустоту космоса.

При старте с поверхности Земли в сопло давит атмосфера, препятствуя истечению. Струя вылетает из сопла расширенной сильнее атмосферы – плотность и давление струи ниже атмосферных. Такая струя называется перерасширенной, а сопло работает в режиме перерасширения. Чем разреженнее поток на срезе сопла, тем больше перепад давления с атмосферой и ее противодействие струе. Перерасширенная сверхзвуковая струя за счет высокой скорости выходит из сопла против перепада в половину атмосферы, а то и больше. И тормозится атмосферой уже за соплом.

Вот оно, работающее свойство сверхзвукового потока двигаться в сторону большего давления. Если этот перепад вырастет еще больше, атмосферное давление втиснется в сопло и начнет отжимать струю от стенок, “выключая” этот участок сопла. Тем самым тормозить струю еще в расширении сопла, не давая вырастать тяге – начнется режим запирания сопла наружным давлением. Зачем же расширять поток на срезе сопла ниже давления атмосферы? Потому что ее давление быстро падает с ростом высоты, в которую все стремительное будет уходить ракета.

Первые полсотни километров вертикали плавно обнулят противодавление атмосферы.

Поток на срезе сопла станет плотнее убывающей атмосферы, выбрасывая избыток давления без пользы. Сжатый плотней атмосферы поток недорасширен до равенства с ней. Он бы сильнее расширится смог, сделав и тягу немного сильней. Это режим недорасширения. Чтобы уменьшить напрасный сброс неиспользованного давления из сопла, степень расширения оптимизируют. То есть рассчитывают так, чтобы интегральные за время работы поднимающегося сопла потери были минимальны, а сделанная работа реактивной силы наибольшей для всего участка полета.

Для этого давление на срезе сопла рассчитывают равным атмосферному на высотах 8-12 км. Здесь работа сопла оптимальная – нет перепадов давления с атмосферой, нет и их потерь. Стартовое перерасширение плавно уменьшается с высотой, обнуляясь в оптимальном режиме истечения на 10-12 км, за которыми будет плавно нарастать недорасширение. Так сопло по мере подъема ракеты проходит три режима своей работы. А выбор давления на срезе сопла дает наименьшие интегральные потери на всем пути до точки выключения.

На вторых и третьих ступенях межконтинентальных и космических ракет двигатели запускаются в отсутствии ощутимого атмосферного давления. Поэтому расширение их сопел делают заметно большим, чем у первой ступени. Большие степени расширения и у космических ракетных двигателей – орбитального маневрирования, ориентации. Их сверхзвуковые части напоминают большие кубки с маленьким глазком критического сечения.

Большая семья, или Разнообразие сопловой газодинамики

Принцип наличия критического сечения реализуется в огромном множестве форм. Классические две воронки, передающие поток одна другой через слияние вершин, могут меняться до неузнаваемости. Щелевое сопло – плоский канал с сужением и расширением. Сопла с центральным телом могут почти не менять внешний диаметр; геометрию канала задает внутреннее центральное тело. Оно бывает конической или пулевидной формы, и к срезу сопла заканчивается, а критическая часть получается кольцевой. Центральное тело может меняться в широких пределах, полностью меняя облик сопла.

Сопло может состоять из одного центрального тела, охватываемого вдоль основания кольцевой щелью. Сжатый поток из щели течет по центральному телу, расширяясь на нем. Такое сопло имеет вид направленного назад вогнутого конуса. Вогнутость работает так же, как чашевидная выпуклость стенки обычного сопла. Только сопло своей стенкой обжимает края расходящегося потока в ровное течение, а центральное тело формирует спрямленную сердцевину потока.

Клиновоздушный двигатель работает именно так. Его сопло линейное – центральное тело вытянуто горизонтально и образует перевернутый вниз клин, подобный клинку сабли c двумя сторонами, сходящимися к лезвию. На этих рабочих вогнутых сторонах происходит расширение сверхзвукового потока, создающее тягу. Функционально стороны – это развернутая в линию стенка обычного сопла, точно так же создающая тягу.

Огневые испытания клиновоздушного двигателя XRS-2200, созданного по программе разработки многоразового космоплана X-33. Фото: ru.wikipedia.org.

Это клин обтекается сверху вниз сверхзвуковым потоком из небольших камер сгорания, тесным рядом установленных вверху. Каждая сторона клина становится для потока из камер одной стенкой сопла. Другой стенкой является атмосфера, обжимающая поток сбоку и своим давлением регулирующая его расширение. Поэтому поток на поверхностях клиновоздушно-клиновидного сопла расширяется оптимально, адаптируясь к изменению давления атмосферы.

Центральное тело может стать плоским, как тарелка, и расположиться в глубине сопла, в начале его расширения. Словно шляпка гвоздя, не до конца забитого в середину критического сечения. Пространство под шляпкой будет дозвуковой частью сопла. А края тарельчатого тела станут внутренней частью критического сечения. Поток растекается радиально из-под тарелки и разворачивается вокруг ее краев в сторону среза сопла, обжимаясь стенками и разгоняясь в сверхзвуковую струю. Тарельчатое сопло намного короче обычного, и поэтому легче. Его своеобразная газодинамика полностью соответствует соплу Лаваля.

Меньше давление, больше мощность рекордных гигантов

Высокое давление требует прочных и толстых стенок камеры сгорания, его проще запереть в камере небольшого размера. Масса большой конструкции с большим давлением будет тоже большой. У твердотопливных двигателей весь корпус является камерой сгорания. Поэтому давление в них ниже, чем в жидкостных ракетных двигателях, достигая лишь первых десятков атмосфер. Раз давление перед соплом пониже – значит, меньше степень расширения сопла и сужение в критическом сечении. Например, через критические сечение сопла твердотопливного ускорителя SLS может свободно пройти подросток. При диаметрах среза сопла в 3,8 м и критического сечения 1,37 м степень расширения составляет около 7,7. Средний уровень давления в 39 атмосфер не позволяет задать большую степень расширения.

Тяга создается не самой по себе скоростью истечения, а расходом при этой скорости. Твердотопливные двигатели могут создавать огромный расход рабочего тела через сопло. У них нет подачи топлива – все оно подано еще на заводе во всю длину двигателя, достигающую иногда десятков метров. У такого топливного массива огромная площадь горения и соответствующий расход, создающий очень большую реактивную тягу.

Самые мощные двигатели, когда-либо созданные человеком за всю историю – ракетные твердотопливные. Из серийно производимых это ускорители для ракеты-носителя SLS, бывшие ускорители Space Shuttle с добавленной пятой топливной секцией. При общей длине 54 м (это высота 18-этажного дома), диаметре 3,7 м и массе 726 тонн их тяга составляет 1620 тонн, а расход 6 тонн в секунду. Сопло такого ускорителя является сегодня самым мощным серийным соплом в мире.

Испытания твердотопливного двигателя QM-2 ускорителя ракеты SLS, 2016 год. Испытательный стенд Orbital ATK Propulsion Systems в Промонтори, штат Юта. (В 2018 году Orbital ATK была куплена Northrop Grumman Corporation и вошла в её состав, как специализированное подразделение по двигателям)

Экспериментальные твердотопливные двигатели были еще мощнее. Испытанный в 1965 году Aerojet AJ-260 SL-1 показал тягу 1800 тонн, а двигатель Aerojet AJ-260 SL-3 должен был вырабатывать 2670 тонн тяги. Их одиночные сопла остаются самыми мощными соплами Лаваля, когда-либо созданными людьми.

Изменяемая геометрия в громе форсажной тяги

Сопла с еще меньшим давлением, с перепадом всего пару атмосфер и очень небольшим сужением, получили огромное распространение в авиации, став незаменимым решением для целого класса двигателей. Поскольку в небольшом давлении много энергии не запасти, здесь идут тепловым путем – накачивают газ жаром мощного керосинового огня.

Форсажные двигатели работают в основном в боевых самолетах. Они используют форсаж при полете на сверхзвуке, для сокращения разбега при взлете, быстрого набора высоты, интенсивного маневрирования. Форсаж – это почти двукратное увеличение тяги, с многократным ростом расхода топлива. Оно сжигается в общем потоке за турбиной, в куске проточной части перед входом в сопло, называемом форсажной камерой сгорания. Ее форсунки образуют огромную керосиновую горелку, нагревающую поток перед соплом на тысячу градусов.

Сопло, будучи тепловой машиной, превращает прибавку тепла в прирост скорости.

Столь сильный добавочный нагрев газа увеличит давление перед соплом. Это снизит обороты турбины и компрессора, что сразу уменьшит подачу воздуха к соплу. Чтобы избежать обвала работы двигателя, критическое сечение сопла расширяют, «сбрасывая» в него растущее давление. Это делают полсотни подвижных элементов – створок. Трапециевидной формы литые пластины из жаростойкой и жаропрочной (это разные свойства) стали лежат внахлест, подобно чешуе или черепице, образуя рабочую поверхность сопла. Согласованно сдвигаясь гидроцилиндрами, они меняют внутреннее сужение, одновременно изменяя срез сопла. Благодаря такой подвижной конструкции сопло сохраняет расширение газа близким к оптимальному и подстраивается под режим работы двигателя, позволяя сильно увеличивать тягу при форсаже. А после выключения форсажа сворки сопла смещаются обратно, уменьшая критическое сечение и размер среза сопла.

Взлет самолета Eurofighter Typhoon на форсажном режиме работы двигателей. Видно небольшое сужение критического сечения сверхзвукового сопла. Фото: Vk.com.

Сопло Лаваля используется в необъятном множестве реактивных устройств. Во всех видах ракет, летающих в воздухе – от космических и межконтинентальных до зенитных и противотанковых, снарядов залповых систем, реактивных гранат, и бесконечного множества других реактивных летающих тел. Известны и реактивные пули, причем разных типов – например, экспериментальные подводные пули для подводного автомата АПС, похожие на толстые зеленые спицы с реактивным двигателем диаметром 5,45 мм. Или полудюймового диаметра (12,7 мм) вращающиеся пули-ракеты «Gyrojet» с четырьмя крошечными косыми соплами, проходившие испытания во Вьетнаме в начале 1970-х вместе со специальным пистолетом для них. Это были самые маленькие боевые ракеты в истории.

Сопловой блок может состоять из одного канала, или нескольких, или из десятков сопел. Размеры, форма, количество, расположение, наклон, тяга, назначение этих сопел меняются в самых широких пределах. Реактивные сопла отводят катапультируемое кресло летчика от самолета, мягко приземляют десантируемую технику и спускаемые аппараты, разгоняют осветительные ракеты и сигналы, уменьшают отдачу безоткатных орудий, забрасывают детонационные шнуры разминирования, отводят в сторону стартовые бугели при шахтном пуске МБР, и выполняют массу других задач, решаемых реактивной силой.

Нереактивные сопла

Сверхзвуковой поток человек добывает соплом Лаваля практически везде, где его использует. В турбинах щелевые сопла Лаваля разгоняют поток для подачи к лопаткам ротора. В сверхзвуковых реактивных турбинах каналы между лопатками подвижного диска тоже щелевые сопла Лаваля, разгоняющие газ до сверхзвуковой скорости. Каждые две соседние лопатки образуют своими поверхностями канал плоского сопла Лаваля, загнутый под углом назад. Поток в нем ускоряется и истекает назад движению, создавая лопаткам реактивную силу. Сверхзвуковые турбины работают в авиации и космонавтике, наземной технике и мореходстве, энергетике и добыче энергоресурсов.

Можно измельчать материал сверхзвуковым потоком, получив тонкую мельницу. В сверхзвуковую струю поступает сыпучий материал. Он захватывается и разгоняется струей, бьющей в твердую преграду, и разбивается об нее со скоростью многих сотен метров в секунду. Высокая чистота измельчения – материал сам колется о преграду – позволяет молоть медикаменты или химикаты высокой степени очистки.

Сверхзвуковые аэродинамические трубы тоже используют сопло Лаваля. Самый распространенный тип сверхзвуковой трубы баллонный. В большом помещении стоят два-три ряда из толстых стальных баллонов двухэтажной высоты, охваченных стеллажным вторым этажом (чтобы добираться к верхушке баллонов, когда нужно). За пару суток до продувки баллоны весь день накачивают воздухом под гул и вибрацию компрессора. Их тела сильно греются от сжатия далеко за сотню атмосфер, потом за ночь остывают.

Продувка проводится в отдельном боксе со стальными дверями. Весь набитый в баллоны воздух сбрасывается за тридцать секунд. Сопло превращает сжатый воздух баллонов в сверхзвуковой поток, текущий в рабочей части трубы. Небольшого сечения, она собрана из прочных стальных элементов, заключающих в себе поток с обдуваемой моделью. Бонусом выступает симуляция сверхзвукового полета на большой высоте с ее морозом – от расширения потока температура в рабочей части минус 80 градусов. Значения числа Маха потока в трубе могут превышать 5, тогда труба становится гиперзвуковой.

Гиперзвуковая аэродинамическая труба Лаборатории реактивного движения (JPL) NASA, построенная в 1959 году. Она работала в диапазоне скоростей от 4 до 11 М. Инженер JPL устанавливает модель ракеты в испытательной секции. Две горизонтальные пластины из нержавеющей стали были гибкими и могли перемещаться с помощью системы гидравлических домкратов, видимых сверху и снизу, для изменения скорости и других параметров воздушного потока. Фото: NASA.

В одном из московских вузов с обширным, но запутанным двором в одном из его закоулков стояла решетчатая будка, похожая на киоск. В эту часть двора выходили аудитории кафедры английского языка. Раз в неделю занятия прерывались на полминуты стеной сплошного грохота, напрочь заглушавшего любые попытки речи преподавателей и студентов. Решетчатая будка скрывала выходной канал сверхзвуковой трубы этого вуза, затопляя грохотом двор во время продувки. Так сверхзвуковая аэродинамика вторгалась во все области наук, выходившие аудиториями к этой будке.

Рассчитать сопло, дающее нужное число Маха при располагаемом расходе, смог первопроходец сверхзвуковых расчетов и основоположник сверхзвуковой аэрогазодинамики Людвиг Прандтль. В 1909 году он построил в Германии, в Геттингене, где работал, первую в мире сверхзвуковую трубу. Сегодня все сопла считают по его методу расчета сверхзвукового сопла.

Расчеты позволяют профилировать сопло. Профиль – это кривизна формы сопла, отличающая его от простого конуса, точная геометрия сопла. В критическом сечении расширение газа самое интенсивное, и сразу за ним надо быстро дать газу объем для расширения. Стенки сопла здесь расходятся в стороны круто расширяющимся раструбом. В конце сопла, когда работа расширения сделана, поток направляется цилиндрическим краем сопла в почти параллельную струю.

Плавный переход от резко расширяющейся части к почти цилиндрическому краю делает сопло выпуклым, похожим на бокал или колокол. Это и будет профилированное сопло. Верно выбранная кривизна стенок расширит газ оптимально, с наибольшим разгоном потока при наименьшей длине сопла. Это минимальная масса, поверхность охлаждения, объем материала и обработки, и стоимость. Поэтому почти все сопла сегодня профилированные. Их профиль рассчитывается по заданным параметрам исходного газа и нужного течения, позволяя вылепить наилучшую кривизну сосуда для сверхзвука.

Возможный ключ к полной многоразовости ракеты

Сопло может стать и главным решением полной многоразовости ракет-носителей. Проблема возвращения второй ступени ракеты обусловлена ее большой орбитальной скоростью. Температура торможения потока при такой скорости, возникающая на ступени при входе, достигает нескольких тысяч градусов.

Можно сделать сопло, занимающее весь нижний торец ступени. Тогда его не боящаяся огня поверхность может играть роль теплозащитного экрана. При этом металлическое сопло активно охлаждается топливным компонентом, текущим в каналах его стенок. А сам компонент, истекая без сгорания через сопло, будет отжимать подушку горячего, ударно сжатого воздуха от торца ступени. Край стенки ступени тоже можно занять охлаждаемым краем сопла. Таким образом, стратегически интегрировав сопло в основание ступени. Тогда сопло сможет решать две разделенные во времени задачи – и создания тяги, и тепловой защиты ступени при входе в атмосферу. Вероятно, образовав новый тип – реактивно-теплозащитное сопло.

Такое сопло добавит к своей базовой газодинамической функции (разгон потока) еще и теплозащитную задачу, повысив свою ценность.

Нужно много расчетов, которые найдут оптимум одной конструкции для обоих задач. При таком большом диаметре сопла обычный вытянутый сверхзвуковой бокал становится слишком габаритным и тяжелым. В разы легче окажется сопло с центральным телом или тарельчатое сопло. Их площадь в разы меньше, требуя меньше охлаждения. Можно «сэкономленное» охлаждение отдать прилегающим стенкам ступени. Оценку таких решений даст расчет конкретных проектов.

В 2020 американская фирма Stoke Space Technologies, получила два гранта через SBIR (Small Business Innovation Research, программа исследований и инноваций в малом бизнесе). Это программа помощи правительства США малым предприятиям в исследованиях и разработках (R&D). Группу из девяти человек возглавляет Энди Лапса (Andy Lapsa), директор и соучредитель Stoke, десять лет создававший двигатели в Blue Origin. Его команда сосредоточена на разработке двигателя возвращаемой верхней ступени.

Грант SBIR на 225 тысяч долларов выдал Национальный научный фонд (National Science Foundation), на «интегрированное силовое решение для верхней ступени многоразового использования». В резюме гранта «предлагается разработать новую технологию, позволяющую космическим ракетам-носителям возвращаться в атмосферу и совершать посадку в заданной точке с повторным использованием. Технические вызовы включают сочетание высокоэффективной силовой установки, надежной тепловой защиты и небольшой массы конструкции». Рассматривается «новое техническое решение, сочетающее основные характеристики ступени с эффективностью отдельной системы (речь о системе охлаждения. – Прим. автора), позволяющей повторное использование второй ступени».

Другой грант SBIR в 125 тысяч долларов получен от НАСА на «новую конфигурацию ракетного двигателя для разгонных ступеней и планетарных посадочных модулей». Резюме гранта говорит о «новой геометрии сопла ракеты, которая ранее не рассматривалась и на которой сосредоточены усилия первой фазы. Сопло обеспечивает большую степень расширения при габаритах в десять раз короче традиционных сопел формы колокола, и позволяет работать с глубоким дросселированием при давлении атмосферы. При интеграции в основание ступени сопло двигателя служит активно охлаждаемым металлическим теплозащитным экраном во время входа в атмосферу. В первую фазу входит разработка методологии проектирования сопла, прогноз характеристик сопла и изготовление оборудования для испытаний параметров».

Насколько плодотворны станут усилия Stoke, покажет время. Но формулировка задач говорит о назревшей потребности прорыва к многоразовой второй степени. И сопло выступает возможным ключевым решением для полной многоразовости ракет.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Вчера, 14:41
Елизавета Александрова

На новых изображениях сверхмассивной черной дыры в нашей Галактике ее ближайшие окрестности выглядят не так, как на опубликованном в 2022 году известном снимке.

Вчера, 14:05
Березин Александр

Когда в Штатах отодвинули фон Брауна — американская космонавтика испытала сильнейший упадок в считаные годы. Сходный быстрый упадок испытал советский космос после смерти Королева. Сегодня глава NASA хочет нанести удар по Маску. Можно ли спрогнозировать, насколько быстро американский космос в этом случае потеряет свои нынешние, безусловно доминирующие над Россией и Китаем позиции?

Вчера, 21:01
Татьяна

Триасовый период завершился 201 миллион лет назад одним из крупнейших массовых вымираний. По времени это совпало с началом раскола суперконтинента Пангея, масштабным излиянием базальтов и, как следствие, усилением парникового эффекта. Оставшуюся часть мезозойской эры на Земле царили динозавры, до того занимавшие подчиненное положение. Механизмы, связывающие все эти события, по сей день остаются предметом дебатов. В новом исследовании международный коллектив ученых пришел к выводу, что для сухопутных видов губительными стали резкие, скоротечные похолодания, а не глобальное потепление.

26 октября
Юлия Трепалина

Финансовое благополучие человека зависит от разных факторов. Новое крупное исследование на примере норвежских жителей показало, как изменения в структуре семьи и смена поколений сказываются на благосостоянии людей.

25 октября
МАИ

Инженерная компания из Дубая LEAP71 сообщила, что спроектированный нейронной сетью Noyron и напечатанный в 3D-формате из меди ракетный двигатель успешно прошел первые испытания на полигоне в Великобритании. Возможно ли это — рассказал эксперт МАИ, старший преподаватель кафедры «Космические системы и ракетостроение» Иван Рудой.

26 октября
Татьяна

В саге о норвежском конунге Сверрире есть эпизод о набеге на замок Сверресборг в Тронхейме в 1197 году. Нападавшие разграбили и сожгли все строения внутри, и видимо, чтобы отравить воду, сбросили в колодец мертвое тело, завалив его валунами. Останки несчастного обнаружили в 1938 году во время археологических раскопок. Сейчас генетики извлекли его ДНК и выяснили происхождение, косвенно подтвердив события, описанные более восьми столетий назад.

14 октября
Алиса Гаджиева

Полторы тысячи лет назад климат в Северном полушарии резко изменился. В Дании так похолодало, что там стало невозможно заниматься сельским хозяйством. Авторы нового исследования считают, что именно этот период был прообразом Фимбульвинтера — зимы, предшествующей Рагнарёку.

15 октября
Татьяна

Сейчас Япония привлекает людей со всего мира, но так было не всегда. На протяжение десяти тысяч лет архипелаг оставался изолированным от остального мира, пока туда не начали прибывать первые «мигранты» с континента. Это показал генетический анализ останков человека эпохи Яёй.

25 октября
МАИ

Инженерная компания из Дубая LEAP71 сообщила, что спроектированный нейронной сетью Noyron и напечатанный в 3D-формате из меди ракетный двигатель успешно прошел первые испытания на полигоне в Великобритании. Возможно ли это — рассказал эксперт МАИ, старший преподаватель кафедры «Космические системы и ракетостроение» Иван Рудой.

[miniorange_social_login]

Комментарии

20 Комментариев
-
0
+
Хорошая статья. Скажем автору спасибо.
Evgenyy Nykolaych
08.08.2024
-
0
+
Хочется понять одно интересное явление: Известно,что скорость вылета снаряда из ствола пушки сильно зависит от веса этого снаряда,а также то,что снаряд всегда летит медленнее выталкивающих его газов.Если массу снаряда уменьшать до бесконечности,то скорость его вылета будет приблизительно равна скорости истечения газов из ствола.То есть,ствол пушки превратится в твердотопливную ракету.Но!!!сопло этой ракеты будет только сужающимся(если диаметр гильзы больше диаметра ствола),критическое сечение-равно длине ствола,а расширяющаяся часть отсутствует.Получается тогда,что и скорость истечения газов будет только дозвуковая!Но танковая гладкоствольная пушка разгоняет легкий подкалиберный снаряд до 1800 м/с,что существенно больше скорости звука!При более легком снаряде,скорость его вылета будет ещё больше.При этом пороховые ракетные двигатели имеют скорость истечения из сопла в районе 2400 м/с. Как такое получается?Состав топлива правтически одинаков -и в пушке и в ракете используется бездымный порох,только разных размеров,у ракеты крупные цилиндры,у пушки мелкие макароны. Кто-нибудь ответит на вопрос, почему в стволе пушки газы имеют сверхзвуковую скорость истечения при наличии только сужения(и даже при отсутствии его)???
Виктор Ч
21.07.2021
-
0
+
Очень объемная и интересная статья! Это не маниакальная "колка" частиц с провозглашением, что дальше колоть нечего!
-
0
+
нужно ослаблять электро-магнитное давление эфира перед летательным аппаратом или повышать это давление за ним... чем с успехом и занимается реактивный двигатель - разложение топлива до частиц эфира - плазмы.
Надеюсь Рогозин и Сердюков прочитают эту статью и хотя бы приблизительно будут знать в какой области они работают.
    -
    -1
    +
    Вы действительно считаете, что, например, директор завода должен полностью разбираться в конструкции и технологии изготовления продукции завода?
    +
      ещё комментарии
      -
      1
      +
      Директор не обязан чертить и придумывать, но читать чертежи и понимать придуманное просто-таки обязан. Иначе он фуфло, а не директор завода и место ему в отделе маркетинга и не выше...
        -
        -1
        +
        Роскосмос в нынешний тупик загнали инженеры и военные. Рогозин пришел намного позже. Мне лень искать для вас список (руководства Роскосмоса) по второму разу, сами нагуглите.
Alexander Baumann
15.06.2021
-
1
+
Вроде бы популяризаторски статья недурно написана, но: 1. Говорить о дозвуковом газовом потоке как о потоке несжимаемом - по меньшей мере безграмотно... 2. Так называемое массовое сопло - это по сути гидродинамическое сопло Лаваля, просто "поверхность Лаваля" тут жидкая, а не твердая. 3. Вообще есть легенда, что сопло Лаваля получилось случайно: рабочий, вытачивавший очередное сопло для паровой турбины, допустил ошибку и "развальцевал" выходную часть обычного сопла Виташинского. А турбина с этим соплом вдруг показала гораздо большую скорость вращения, чем с предыдущими соплами. 4. Охлаждение юбки сопла топливным компонентом было реализовано еще в двигателе F-1 ракеты Сатурн-5... Так что это инновация "с бородой". Н-да, видимо, нас как-то иначе учили...
Asmite Qielee
13.06.2021
-
0
+
В статье всего две грамматические ошибки, моё почтение) По поводу самой сути было интересно узнать, что сверхзвуковое истечение невозможно без расширения вслед за сужением... Неожиданно, действительно. Ну а в целом оптимизациая реактивных двигателей всё ещё имеет запас, но это путь в никуда, увы. Необходим принципиально новый двигатель, но такого на горизонте не посматриваетс
    Asmite Qielee
    13.06.2021
    -
    0
    +
    Все фантастические произведения, повествующие о путешествиях к звёздам, грешат одним, ну может кроме "Пасынков Вселенной") избавиться от инерции невозможно, значит путешествовать между звёзд будут люди лишённые физического тела. Впрочем могут возразить что и фотоны имеют массу) но это уже неправда и в эти тонкости углубляться бесполезно в рамках этой великолепной статьи
    +
      ещё комментарии
      Asmite Qielee
      13.06.2021
      -
      0
      +
      Забыл ещё о замечательном учёном и писателе, авторе "Туманнность Андромеды") так летать тоже не получиться, но, как говорится, всё подтверждено рассчётами в данном случае и не противоречит общепринятой картине мира
        -
        0
        +
        В книгах Урсулы Ле Гуин тоже так летают, как у Ефремова. Да и вообще много у кого. С ходу могу назвать ещё "Тау ноль" Пола Андерсона и "Защитник" Ларри Нивена.
      Alexander Baumann
      15.06.2021
      -
      0
      +
      Есть многое на свете, друг Горацио, что и не снилось нашим мудрецам...
    Alexander Baumann
    15.06.2021
    -
    0
    +
    Ионный. Дает в десятки раз больше возможностей, чем классический газодинамический.
-
1
+
Любовь автора к аэродинамике ракетного двигателя изящно сказалась в одном месте, где он не удержался от дактиля! Сжатый плотней атмосферы поток недорасширен до равенства с ней. Он бы сильнее расширится смог, сделав и тягу немного сильней. Лично я в совершеннейшем восторге!
Vach Lake
12.06.2021
-
0
+
а как оценить пламя из сопла наших ракет с четким минимумум и максимум в горящем шлейфе и чадящишее горение двигаделей корейских ракет?
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно