• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
27.02.2024, 12:03
НИУ ВШЭ
259

Возникновение турбулентности смоделировали на уровне атомов

❋ 4.4

Ученые из НИУ ВШЭ и МФТИ разработали суперкомпьютерный метод моделирования жидкости на атомных масштабах, позволяющий описывать возникновение турбулентных режимов течения. Исследователи рассчитали на суперкомпьютерах HARISMa и «Десмос» течение жидкости, состоящей из нескольких сотен миллионов атомов. Метод уже применяется для моделирования течения жидкометаллического свинцового теплоносителя в ядерном реакторе.

Возникновение турбулентности смоделировали на уровне атомов
Возникновение турбулентности смоделировали на уровне атомов / © Getty images

Работа опубликована в The International Journal of High Performance Computing Applications. В компьютерном моделировании жидкость обычно описывают как сплошную среду, лишенную дискретности, а ее течение определяют с помощью численного решения дифференциальных уравнений Навье — Стокса. Такие модели называются континуальными, и в них не описывается поведение отдельных атомов и молекул жидкости. В прикладных задачах ученых очень часто интересует не спокойное — ламинарное, а турбулентное течение, когда потоки жидкости образуют вихри разного размера, меняющиеся во времени и пространстве стохастически.

В 1940-е годы советский математик академик Андрей Николаевич Колмогоров создал теорию эволюции вихрей в турбулентных потоках, показав, что большие вихри измельчаются в маленькие вплоть до десятков и сотен нанометров. При таких размерах (на колмогоровском масштабе длины) континуальные методы не работают, и нужно моделировать поведение отдельных атомов и молекул, численно решая их уравнения движения. Переход к подобному дискретному описанию может быть критически полезен для некоторых специальных случаев. Например, так можно изучать диффузию и образование кластеров частиц в турбулентном потоке. Конечно, эти процессы можно рассматривать в континуальном приближении, однако корректность используемых допущений можно проверить только с помощью атомистического моделирования.

Для изучения зарождения турбулентности ученые из НИУ ВШЭ и МФТИ разработали концепцию, позволяющую наблюдать быстрое течение жидкости, огибающей препятствия, на микрометровых масштабах. Ученые придумали способ, как удержать поток жидкости в ограниченных размерах, затем реализовали его в двух программах для молекулярного моделирования. Также исследователи проанализировали производительность суперкомпьютеров, на которых проводились расчеты, и пути ее оптимизации.

«Мы получили естественный поток жидкости с завихрениями, которые возникают сами собой в результате обтекания препятствия на масштабах в сотни миллионов атомов, чего до нас еще не делали. Цель нашего нового метода — получать данные для особых случаев, таких как диффузия, течение возле стенок, чтобы физически правильно сопрягать атомный и континуальный масштаб в тех областях моделирования, где эта смычка является критически важной», — комментирует руководитель научной группы, ведущий научный сотрудник Международной лаборатории суперкомпьютерного атомистического моделирования и многомасштабного анализа НИУ ВШЭ, заведующий лабораторией суперкомпьютерных методов в физике конденсированного состояния МФТИ Владимир Стегайлов.

Моделируемая система представляла собой плоский квазидвумерный параллелепипед, внутри которого находилось цилиндрическое препятствие и от нескольких миллионов до нескольких сотен миллионов атомов жидкости. К тепловым скоростям атомов добавлялась заданная скорость потока, и если она была достаточно большой, то после огибания цилиндра спонтанно формировались турбулентные вихри. Так ученые смогли в естественных условиях промоделировать возникновение предтурбулентного режима течения, не накладывая на движение жидкости иных специальных условий.

Сложность моделирования состояла в том, что частицы в процессе движения должны покидать пределы параллелепипеда. Обычно в атомистическом моделировании применяют периодические граничные условия, когда атомы, условно покинувшие систему справа, на следующем шаге расчетов искусственно возвращаются в систему слева с той же скоростью и направлением движения. Таким образом, система остается замкнутой.

Этот метод наиболее вычислительно простой. В задаче с вихрями физикам пришлось придумать такие периодические условия, чтобы при переходе границы системы течение переставало быть турбулентным, иначе после возвращения атомов в параллелепипед налетающая на препятствие жидкость уже была бы турбулентной, что нарушило бы постановку задачи. Ученые предложили расположить возле правой границы системы виртуальные плоскости, после пересечения которых скорость частиц перерассчитывалась, течение становилось нормальным (ламинарным), а значит, возвращение атомов не нарушало условие ламинарности натекающего потока.

После теоретического обоснования предложенных граничных условий ученые внедрили их в широко используемые программы для молекулярного моделирования LAMMPS и OpenMM и рассчитали течение жидкости на суперкомпьютерах с графическими ускорителями. Отдельное внимание ученые уделили сохранению максимальной производительности вычислений, поскольку в системах из миллионов атомов, для которых рассчитывается несколько миллионов временных шагов, миллисекундное ускорение на одном вычислительном шаге приводит к экономии нескольких дней и даже недель работы суперкомпьютера.

Студент магистратуры МИЭМ НИУ ВШЭ Владислав Галигеров, один из двух главных авторов статьи, добавляет: «Сейчас все больше развиваются инструменты для глубокого анализа производительности, например инструмент анализа параллельных программ Score-P, который мы использовали в данной работе. Очень важно выработать стандарты работы с такими инструментами, чтобы разработчики программ для суперкомпьютеров, внося изменения в существующий код или написав что-то новое, могли провести анализ в соответствии с ними и оценить, насколько эффективным будет их приложение на различных архитектурах суперкомпьютеров, включая те, к которым они не имеют доступа». Для анализа в работе использовали суперкомпьютер «Десмос» Объединенного института высоких температур РАН и суперкомпьютер HARISMa НИУ ВШЭ. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Национальный исследовательский университет «Высшая школа экономики» — один из крупнейших и самых востребованных вузов России. В университете учится 54 тысячи студентов и работает почти 4,5 тысячи учёных и преподавателей. НИУ ВШЭ ведёт фундаментальные и прикладные исследования в области социально-экономических, гуманитарных, юридических, инженерных, компьютерных, физико-математических наук, а также креативных индустрий. В университете действуют 47 центров превосходства, или международных лабораторий. Вышка объединяет ведущих мировых исследователей в области изучения мозга, нейротехнологий, биоинформатики и искусственного интеллекта. Университет входит в первую группу программы «Приоритет-2030» в направлении «Исследовательское лидерство». Кампусы НИУ ВШЭ расположены в четырех городах — Москве, Санкт-Петербурге, Нижнем Новгороде и Перми, а также в цифровом пространстве — «Вышка Онлайн».
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
21 октября, 14:25
Юлия Трепалина

Насколько счастливым нужно быть человеку, чтобы это начало благоприятно сказываться на продолжительности жизни? Ученые определили минимальный уровень субъективного ощущения благополучия, или счастья, преодолев который, оно становится фактором, позитивно влияющим на здоровье населения страны.

21 октября, 13:22
Адель Романова

Новую миссию к Урану, по нынешним планам, нужно запустить в начале 2030-х годов, но зонд к тому времени вряд ли успеют построить и подготовить. Это может оказаться даже к лучшему: ученые обдумывают вариант использования для полета к ледяному гиганту новейшей космической системы Starship, которая сейчас проходит испытания. Она могла бы добраться до Урана на несколько лет быстрее, чем предполагается по классической схеме.

20 октября, 17:27
Адель Романова

У астрономов появилось возможное объяснение феномену, который обнаружили несколько лет назад: у некоторых карликовых планет и даже астероидов есть кольца, как у газовых гигантов. Ученые предположили, что кольца малых тел формируются благодаря их неправильной форме и, как следствие, неравномерно распределенной гравитации.

17 октября, 22:00
Любовь С.

В густой оранжевой дымке Титана, где температура опускается до минус 180 градусов Цельсия, происходят невозможные по земным меркам химические реакции: молекула циановодорода (HCN), рожденная в атмосфере из азота, метана и этана, могла сформировать кристаллы, объединяющие вещества противоположной природы.

19 октября, 10:00
Любовь С.

Первый официальный документ, описывающий принцип действий в случае возможного контакта с внеземной цивилизацией, был принят Международной академией астронавтики (IAA) в 1989 году. С тех пор декларацию неоднократно пересматривали, а ее обновленную версию, адаптированную под реалии XXI века, ученые разработали совместно с участниками проекта по поиску инопланетян SETI.

18 октября, 11:06
Evgenia Vavilova

Число несущих их клеток не просто увеличивается, механизм отбора связан с эволюционным преимуществом половых клеток. Узнать об этом помог улучшенный метод секвенирования ДНК.

13 октября, 11:10
Илья Гриднев

Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.

26 сентября, 11:41
ИИМК РАН

Археологи Института истории материальной культуры РАН (ИИМК РАН), при поддержке фонда «История отечества» в ходе раскопок обнаружили на всемирно известной стоянке каменного века Костенки-17 в Воронежской области редчайшие украшения из зубов песца и окаменелой раковины, а также уникальный для этого времени нуклеус из бивня мамонта для снятия заготовок.

7 октября, 11:46
Игорь Байдов

Экспедиционное судно «Эндьюранс» более века называли самым прочным деревянным судном, когда-либо построенным человеком. Но находка, сделанная на дне моря, и изучение старых писем раскрыли неприятную правду. Легендарный «Эндьюранс» Шеклтона вовсе не был непобедимым левиафаном. Напротив, он имел фатальные недостатки, а капитан знал об этом еще до того, как ушел в роковое плавание к берегам Антарктиды.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно