Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В ЮФУ улучшили алгоритм размножения краснокнижных растений
Созданный учеными Академии биологии и биотехнологий Д. И. Ивановского ЮФУ алгоритм математического моделирования позволит оптимально и точно подбирать нужные концентрации питательных сред для растений. Такую технологию можно будет применять для микроклонального размножения — эффективного способа сохранения генофонда угрожаемых растений.
На сегодняшний день одним из популярных и высокоэффективных методов сохранения генофонда редких и исчезающих видов растений является микроклональное размножение. Благодаря этому методу возможно не только сохранять исчезающие виды растений in vitro («в пробирке» — в искусственных условиях, вне организма или естественной среды), но и исследовать их генетические, физиологические, анатомо-морфологические аспекты биологии, осуществлять определение и выделение вторичных метаболитов, находящих применение в медицине, а также производить количество материала, достаточного для селекции или размножения растений-регенерантов с целью дальнейшей продажи.
На каждом этапе микроклонального размножения растению необходима соответствующая питательная среда. Однако, ученые каждый раз ее подбирают вручную, исследуя множество разных вариаций концентраций для каждого растения, что замедляет и даже усложняет процесс микроклонирования. В связи с этим молодые исследователи Академии биологии и биотехнологий Д. И. Ивановского ЮФУ во главе с кандидатом биологических наук, научным сотрудником Ботанического сада ЮФУ, руководителем молодежной лаборатории «Молекулярная биотехнология растений», запущенной в рамках программы «Приоритет-2030»(нацпроект «Наука и университеты»), Василием Чохели разработали алгоритм, который наиболее приемлем для подбора оптимальной питательной среды для микроклонального размножения растений.

«Несмотря на то, что в мире существует бесчисленное множество видов математического моделирования и математического подбора питательных сред, мы разработали алгоритм, который, на наш взгляд, будет наиболее точен и удобен в использовании. Благодаря четкой схеме алгоритм поможет ученым минимизировать путаницы и позволит более оптимально подбирать концентрации и, соответственно, добиться лучших результатов экспериментов», — рассказал Василий Чохели.
В чем заключается суть — ученые берут несколько вариаций питательных сред, которые отличаются между собой по минеральному составу (макро и микроэлементам), а также концентрацией органических веществ; наличию тех или иных фитогормонов: цитокинины или ауксины, в зависимости от того, что нужно получить в итоге, и их концентрации. Используя различные регуляторы роста и концентрации этих регуляторов, они анализируют все среды и оценивают три главных параметра: минеральное питание, регулятор роста и концентрация регулятора роста. Именно так и подбирается оптимальная среда для исследуемого растения.

«В начале, при исследовании влияния концентраций фитогормонов, используется шаг в 0,5 мг/л. Изначальная безгормональная питательная среда (0 мг/л) выступает в качестве контроля. Затем линейка питательных сред с концентрациями 0,5 мг/л, 1 мг/л, 1,5 мг/л, 2 мг/л. Затем после статистического анализа, когда становится известным наилучшее минеральное питание и наиболее подходящий регулятор роста, и его концентрация, происходит приготовление новой «линейки» питательных сред, но «шаг концентраций» уменьшается до 0,1 мг/л. Так например, было выявлено, что лучше всего подходит среда MS (Мурасиге и Скуга) и фитогормон метатополин в концентрации 1,5 мг/л. Мы ищем более точную концентрацию гормона, при которой растение будет давать наибольший коэффициент мультипликации. Поэтому готовим следующие концентрации: 1,3 мг/л; 1,4 мг/л; 1,6 мг/л, 1,7 мг/л. При желании и возможности исследователя, можно дальше дробить шаг», – пояснил Василий Чохели.
В недавнем исследовании ученые уже протестировали новый алгоритм, изучив с помощью него эффект влияния разных фитогормонов на размножение Копеечника крупноцветкового (Hedysarum grandiflorum Pall.), Иссопа мелового (Hyssopus cretaceus Dubj.), Левкой душистый (Matthiola fragrans Bunge). Было показано, что оптимальной минеральной основой для изучаемых видов является среда Гамборга (В5). В то время, как большинство лабораторий работает с модификациями канонической питательной среды МС. Также было показано, что эффективной заменой синтетического гормона 6-БАП, является фитогормон метатополин. Так, для копеечника крупноцветкового оптимальная концентрация составляет 1мг/л, а для иссопа мелового — 0,5 мг/л.
Для левкоя душистого оптимальная среда В5 с добавлением кинетина в концентрации 1мг/л. По словам ученых, использование таких «мягких» (с низким мутагенным статусом) фитогормонов позволит эффективно сохранять редкие растения в культуре in vitro. Результаты исследования, выполненного при финансовой поддержке Министерства науки и высшего образования России в рамках государственного задания в сфере научной деятельности, изложены в научном журнале Horticulturae.
Компьютерное моделирование показало, что комета из китайских хроник 5 года до нашей эры могла визуально зависнуть над Иудеей благодаря синхронизации с вращением Земли. Это дает физическое объяснение библейскому описанию остановившейся звезды, хотя отсутствие упоминаний о таком ярком объекте в римских летописях ставит гипотезу под сомнение.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
Южная Америка в доколониальный период была ареной многочисленных локальных конфликтов за ресурсы. Ученые из Аргентины выяснили подробности сложного и трудоемкого производства стрел в этом регионе.
Биологи опровергли представление о примитивности органов чувств у древнейших бесчелюстных, обнаружив у миксин огромный арсенал рецепторов для поиска добычи. Исследователи доказали, что способность различать сложные запахи и аминокислоты появилась у общего предка позвоночных задолго до возникновения челюстей.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
