Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В Пермском Политехе повысили точность нейросетей для распознавания изображений
Нейронные сети с каждым днем захватывают все больше различных сфер и автоматизируют множество процессов. Одно из популярных направлений — распознавание изображений. Его используют в медицинской диагностике, в автомобильной сфере для распознавания знаков на дороге, для навигации и визуального восприятия окружающей среды в робототехнике, для обнаружения инцидентов в системах видеонаблюдения. Требуется постоянная модификация и улучшение методов для снижения ошибок. Ученые ПНИПУ разработали подсистему машинного зрения, которая обеспечивает надежное распознавание мелких и разноудаленных от камеры объектов. Предложенная схема поможет, например, обнаружить оружие или опасные предметы в толпе.
Машинное зрение – это способность компьютеров «видеть» и понимать изображения так же, как это делают люди. С его помощью компьютер распознает лица на фотографиях и определяет типы объектов (например, машина, дерево, человек). Для решения задач обнаружения и идентификации используют нейронные сети. Но они могут выдавать ошибки, что отрицательно сказываются на точности всей системы.
У традиционной одноступенной схемы есть недостатки – игнорирование контекста при поиске объектов и отсутствие жесткой привязки размеров объекта на изображении к параметрам перспективы сцены (кадра). Из-за этого увеличивается количество неверных результатов. Также нейросетевая модель, обученная на универсальном наборе категорий, может неправильно распознавать объекты, если происходит изменение качества или ракурса изображения.
Ученые Пермского Политеха разработали подсистему машинного зрения, которая обеспечивает высокую точность классификации и сегментации. Классификация позволяет определить, к какой категории относится объект, а сегментация – выделить и обозначить его контуры. Политехники предложили двухступенную (двухэтапную) схему обработки изображений независимыми нейронными сетями. Она учитывает контекст сцены и адаптируется к степени удаленности объектов или изменению ракурса съемки.
Основной принцип разработанной политехниками схемы – разделение классов на «суперобъекты» и «вложенные объекты». На первом этапе нейросеть ищет и выделяет область интереса: остается только ограничивающий прямоугольник с суперобъектом («оружие» у «человека», «деталь» — часть «станка»), все остальное обрезается. Таким образом гарантируется, что искомый объект будет находиться внутри области интереса. На втором этапе происходит обнаружение и сегментация искомых объектов.
Такой подход, например, подходит для системы видеонаблюдения с возможностью обнаружения оружия и опасных предметов в толпе, когда люди находятся на разном расстоянии от камер. Обычная нейронная сеть может не различить носимое оружие на очень удаленных или очень приближенных позициях сцены. Но, если предварительно обнаружить силуэты всех людей на снимке, то детекция (распознавание) оружия будет более точной. Другие примеры – идентификация различных разноудаленных конструкций, механизмов со множеством деталей, аэрофотосъемка.
«Мы разработали новую схему обработки изображений с помощью нейронных сетей. Она находит объекты искомых категорий вне зависимости от их размеров, а также стабильна к изменению условий съемки. Увеличение точности на 25 процентов на отдельных тестовых изображениях происходит за счет искусственного ограничения назначения категорий и локализации объектов в контексте сцены обрабатываемого изображения», – поделился кандидат технических наук, доцент кафедры автоматики и телемеханики ПНИПУ Андрей Кокоулин.
Разработка ученых Пермского Политеха улучшит распознавание изображений с помощью нейросетей, повысит точность определения мелких и разноудаленных от камеры объектов. Предложенная схема поможет, например, обнаружить оружие или опасные предметы в толпе.
Психологи не первое десятилетие спорят о природе морали: врожденное это свойство или приобретенное? В новом исследовании ученые попытались на большой выборке малышей воспроизвести эксперимент, который ранее рассматривали как подтверждение способности младенцев различать морально правильные и неправильные действия.
Распространено мнение, что женский оргазм — «в голове», то есть во многом связан с мыслями и фантазиями. Однако ученые из Великобритании обнаружили особенность восприятия, от которой, согласно данным исследования, зависит сексуальное наслаждение.
В шаровом скоплении Омега Центавра надеялась найти так называемую черную дыру промежуточной массы — нечто среднее между остающимися после «умирающих» звезд небольшими черными дырами и сверхмассивными, которые наблюдают в центрах галактик. Хотя такие черные дыры ищут давно, пока их поиски в космосе безуспешны. Похоже, их нет и в Омеге Центавра, зато есть целая система из других черных дыр.
О том, где скрывается человеческое «я», что такое «знающие нейроны», какие страны наиболее активно развивают нейронауки и о том, почему нам важно признать наличие сознания у животных, мы поговорили с одним из самых выдающихся нейробиологов, директором Института перспективных исследований мозга МГУ имени М.В. Ломоносова, академиком Константином Анохиным.
Одни из самых ярких объектов во Вселенной — квазары — представляют собой активные ядра галактик, питаемые центральными сверхмассивными черными дырами. Электромагнитное излучение, испускаемое этими объектами, позволяет астрономам изучать структуру Вселенной на ранних этапах ее развития, однако мощный радиоджет, исходящий от недавно обнаруженного экстремально яркого квазара J1601+3102, ставит под сомнение существующие представления о «космической заре».
В шаровом скоплении Омега Центавра надеялась найти так называемую черную дыру промежуточной массы — нечто среднее между остающимися после «умирающих» звезд небольшими черными дырами и сверхмассивными, которые наблюдают в центрах галактик. Хотя такие черные дыры ищут давно, пока их поиски в космосе безуспешны. Похоже, их нет и в Омеге Центавра, зато есть целая система из других черных дыр.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Обсерватории постоянно улавливают «мигающие» радиосигналы из глубин Вселенной. Чаще всего их источниками оказываются нейтронные звезды, которые за это и назвали пульсарами. Но к недавно обнаруженному источнику GLEAM-X J0704-37 они, по мнению астрономов, отношения не имеют.
Многие одинокие люди считают, что окружающие не разделяют их взглядов. Психологи из США решили проверить, так ли это на самом деле, и обнаружили общую особенность у людей с недостаточным количеством социальных связей.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии