• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
16.06.2022
ФизТех
2 430

В МФТИ сделали шаг к оптической инженерии будущего

4.8

Ученые Центра фотоники и двумерных материалов МФТИ с коллегами из Великобритании и Сингапура открыли топологические фазовые особенности двумерных материалов. Эффект может вывести оптическую инженерию на новый технологический уровень. Использование открытия на примере биосенсоров сразу дало рекордную чувствительность.

Схема для наблюдения фазовых особенностей в ультратонких пленках HRIM / Nature Communications

Научная статья опубликована в Nature Communications. Если ХХ век был веком полупроводников, то ХХI век — это век двумерных материалов. Одна из самых перспективных областей применения материалов толщиной в один атом — оптика. Если вы носите очки, то знаете, что ваши линзы имеют строго определенные диоптрии, а острота вашего зрения в течение дня меняется. С помощью двумерных материалов можно сделать линзы, свойства которых можно будет менять в зависимости от изменения особенностей вашего зрения.

Одна из ключевых проблем, которая отделяет нас от этого светлого будущего, — огромная разница в 1000 раз в размерах между длинной волны света и толщиной двумерных материалов. Поэтому на данный момент эффективность двумерных материалов в оптике очень низкая.

Основное внимание в исследованиях в оптике ученые уделяют фазе волны — тому, сколько волна идет внутри материала. Физики Центра фотоники и двумерных материалов МФТИ изучают возможности «накопления фазы» в двумерном материале, то есть то, как заставить свет находиться внутри совершенно плоского материала достаточно долго для изменения работы системы. Им удалось найти нужную топологию в системе «двумерный материал — подложка».

У некоторых двумерных материалов большой оптический отклик. Например, ряд дихалькогенидов переходных металлов имеют огромный показатель преломления — более четырех. Для сравнения, у воды этот показатель — всего 1,3.

«Мы использовали дихалькогениды переходных металлов и в частности диселенид палладия. Несмотря на то, что материал всего лишь атомарной толщины, его взаимодействие со светом колоссально. Эта пленка поглощала свет вплоть до 20 процентов! Мы использовали это колоссальное взаимодействие, чтобы найти топологию, позволяющую получить фазовые изменения», — говорит Георгий Ермолаев, научный сотрудник Центра фотоники и двумерных материалов МФТИ.

Двумерный материал находится на подложке, имеющей слоистую структуру. Чаще всего это она содержит оксид кремния. У этого материала совсем другой коэффициент преломления, сильно отличающийся от других. В результате подложка обладает поверхностью нулевого отражения. За счет разницы между коэффициентами преломления двумерного материала и подложки образуется резкое изменение фазы световой волны. Ученые рассмотрели разные двумерные пленки на разных подложках. Эффект оказался универсальным. В зависимости от материала длина волны, на которой происходил скачок фазы, была разной.

Алексей Арсенин, заместитель руководителя Центра фотоники и двумерных материалов МФТИ, рассказывает: «Двумерные материалы могут обеспечивать лишь небольшую оптическую фазовую задержку из-за того, что их толщина очень мала. Чтобы решить эту проблему, мы комбинируем пленки двумерных полупроводников с подложкой SiO2/Si. В результате получаем быстрые фазовые изменения. Кроме того, мы находим, что такие топологические фазовые сингулярности распространены повсеместно для всего класса атомарно тонких материалов с высоким показателем преломления».

Ученые применили найденный эффект для создания высокочувствительных биосенсоров. Валентин Волков, руководитель Центра фотоники и двумерных материалов МФТИ, добавляет: «Чаще всего при анализах есть какая-то биологическая жидкость, и нужно определить наличие в ней определенного белка. Обычно концентрация очень маленькая. Наличие молекул белка меняет коэффициент преломления этой жидкости, но очень слабо. Мы положили двумерную пленку диселенида палладия на биосенсорный чип и получили рекордную чувствительность по сравнению со всеми остальными методиками измерения».

Найденный эффект — это потенциально очень мощный инструмент фазовой инженерии в плоской оптике и может найти применение в огромном количестве приложений. Исследование выполнено при поддержке мегагранта Правительства Российской Федерации. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Вчера, 17:37
Igor

К неожиданным прорывам в науке могут привести даже пустяковые вещи вроде чаинок в чашке. Парадокс чайного листа только на первый взгляд кажется неважным, но в свое время им заинтересовался Альберт Эйнштейн. Решение парадокса ученый представил на одной из конференций, чем вызвал ажиотаж у академической публики. Докладу немецкого физика уже почти 100 лет, а самому парадоксу — гораздо больше, но исследователи во всем мире продолжают использовать его в своих работах. Например, недавно китайские ученые применили его для изучения концентрации веществ в наножидкостях.

Позавчера, 17:52
Александр Березин

Космический телескоп «Гайя» позволил оценить скорость движения рекордного количества звезд в Млечном Пути, и новые данные оказались крайне неожиданными. Дело не только в том, что его масса упала во много раз: стало ясно, что сама структура Галактики не такая, как думали раньше.

Позавчера, 16:05
ЮФУ

Разработка ученых Института нанотехнологий, электроники и приборостроения ЮФУ потенциально может найти применение в производстве экологически чистого топлива и накопления энергии. Кроме того, технология может значительно повысить эффективность расщепления воды, способствуя переходу к устойчивой энергетике.

Позавчера, 17:52
Александр Березин

Космический телескоп «Гайя» позволил оценить скорость движения рекордного количества звезд в Млечном Пути, и новые данные оказались крайне неожиданными. Дело не только в том, что его масса упала во много раз: стало ясно, что сама структура Галактики не такая, как думали раньше.

26 сентября
Мария Азарова

Ученые применили современные методы, такие как микрокомпьютерная томография, получили сотни рентгеновских изображений и создали 3D-модель. Все для того, чтобы обнаружить следы опухоли во внутренней части черепа человека, жившего в середине IV века нашей эры. Это самый ранний случай менингиомы на Пиренейском полуострове — из тех, что известны науке.

Вчера, 17:37
Igor

К неожиданным прорывам в науке могут привести даже пустяковые вещи вроде чаинок в чашке. Парадокс чайного листа только на первый взгляд кажется неважным, но в свое время им заинтересовался Альберт Эйнштейн. Решение парадокса ученый представил на одной из конференций, чем вызвал ажиотаж у академической публики. Докладу немецкого физика уже почти 100 лет, а самому парадоксу — гораздо больше, но исследователи во всем мире продолжают использовать его в своих работах. Например, недавно китайские ученые применили его для изучения концентрации веществ в наножидкостях.

31 августа
Сергей Васильев

Вопреки предсказаниям, кислород-28 оказался крайне неустойчивым. Физики не успели даже зарегистрировать такие ядра, хотя теоретически они должны быть дважды магическими, а значит — особенно стабильными.

31 августа
Дарья Губина

Тотальная память — плохо для мозга. Чтобы детально запомнить событие, стоит о нем вспоминать как можно реже. Чем больше вы знаете по теме, тем больше новой информации вы запомните. Но если информации будет слишком много, то не вся она будет зафиксирована в мозге. Naked Science разбирается, как сегодня ученые, нейробиологи и психологи объясняют способности нашего мозга запоминать и учиться.

2 сентября
Редакция

Американский поэт и литературный критик Адам Кирш в эссе, опубликованном в The Guardian, рассуждает о том, как новые представления о возможностях животного разума меняют нас самих.

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: