Ученые нашли способ неинвазивно высвобождать лекарственный препарат из полимерных носителей внутри раковых клеток — Naked Science
Университет ИТМО
1

Ученые нашли способ неинвазивно высвобождать лекарственный препарат из полимерных носителей внутри раковых клеток

4.9

Концепция, в разработке которой приняли участие исследователи Университета ИТМО, построена на взаимодействии резонансных полупроводниковых наночастиц — оксида железа со светом.

Ученые нашли способ неинвазивно высвобождать лекарственный препарат из полимерных носителей внутри раковых клеток / ©www.euroonco.ru

Резонансные полупроводниковые наночастицы способны локально нагреваться от воздействия лазера и преобразовывать получаемый свет в тепло. Если такими резонансными частицами модифицировать оболочку полимерных контейнеров (капсул), которые используются в качестве средств для доставки биоактивных веществ в клетки и облучить их лазером, то из-за тепла произойдет деформация полимерных капсул и дистанционное высвобождение лекарств в нужном месте в нужное время. Исследование опубликовано в журнале Laser and Photonics Reviews.

Над исследованием в области неинвазивного раскрытия капсул с лекарствами в раковых клетках при помощи оптического излучения работала международная команда физиков, химиков и биологов. За синтез и оптическую характеризацию наночастиц оксида железа отвечали ученые Университета ИТМО, французские коллеги помогли составить полный спектр характеризаций структур оксида железа, который используется в качестве полупроводниковой наночастицы. Коллеги из Китая сделали возможной визуализацию процесса вскрытия капсул с лекарством, а сотрудники Первого мединского университета Санкт-Петербурга провели биологические эксперименты по доставке противоопухолевого препарата в первичные опухолевые клетки.

В настоящее время существуют противоопухолевые лекарственные препараты, которые способны эффективно бороться со злокачественными новообразованиями. Но, к сожалению, они направлены не только в отношении пораженных клеток и тканей, но и в отношении здоровых. Поэтому необходимы новые подходы для борьбы с раком. Одним из таких подходов является доставка лекарственных препаратов с помощью микро- и наночастиц, при которой создаются локально высокие концентрации препарата в зоне опухоли при минимальных системных концентрациях во всем организме.

Идея доставки лекарств с помощью нано- и микрочастиц заключается в следующем: частицы, загруженные лекарством, вводятся в организм и накапливаются в зоне опухоли. Чтобы неинвазивно высвободить лекарственный препарат, необходимо сделать частицы-носители светочувствительными. Для этого можно использовать резонансные полупроводниковые наночастицы из оксида железа, которыми модифицируются полимерные контейнеры (капсулы). Далее при облучении модифицированных полимерных контейнеров наночастицы оксида железа нагреются и лекарство неинвазивно высвободится.

Более того, преимущество оксида железа состоит том, что этот материал не только эффективный нанонагреватель, но и локальный нанотермометр. То есть при нагреве частиц можно контролировать температуру, тем самым предотвращая чрезмерный нагрев здоровых клеток и тканей.

«Мы протестировали наши системы для доставки лекарств инвитро на стволовых и опухолевых клетках. Стволовые клетки в этом эксперименте были использованы как модель здоровых клеток,а опухолевые клетки — как модель больных клеток. В качестве контроля клетки были просто облучены лазером с теми же параметрами. В итоге действие противоопухолевого лекарства было направлено в отношении опухолевых клеток при облучении их лазером, в то время как в отношении здоровых клеток практически не наблюдалась токсичность лекарств. Контрольные клетки также выжили по окончании эксперимента, что говорит о том, что опухолевые клетки погибли в результате высвобождения лекарства. Таким образом были созданы эффективные светочувствительные системы для доставки лекарств в клетки», — рассказал Михаил Зюзин.

Разработанные системы для доставки лекарств в клетки могут быть использованы как локальные нанотермометры, что делает их многофункциональными. «Наночастицы в данном случае выступают как преобразователи света в тепло и одновременно как термометр. Дело в том, что измерить температуру традиционными способами на таких маленьких объектах крайне сложно. Например, есть разные методики, которые используют красители, которые при достижении определенной температуры выгорают и перестают светить.

Но проблема в том, что это не многоразовая термометрия, а также она бинарна, то есть мы можем понять только: это выше какой-то температуры или ниже — да или нет. Конкретных показателей там не будет. А полупроводниковые наночастицы эффективно поглощают свет и преобразуют его в тепло. Из-за этого у него начинает немного меняться частота колебания кристаллической решетки и иначе начинает рассеиваться свет. По этим изменениям мы можем определить то, насколько мы нагрели частицу, а также видим на спектрометре эти данные», — объяснил Георгий Зограф.

Исследователи намерены продолжать работу и развивать полученные результаты. На следующий год запланировано проведение доклинических исследований на лабораторных животных in vivo.  

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Университет ИТМО (Санкт-Петербург) — национальный исследовательский университет, ведущий вуз России в области информационных и фотонных технологий. Альма-матер победителей международных соревнований по программированию: ICPC (единственный в мире семикратный чемпион), Google Code Jam, Facebook Hacker Cup, Яндекс.Алгоритм, Russian Code Cup, Topcoder Open и др. Приоритетные направления: IT, фотоника, робототехника, квантовые коммуникации, трансляционная медицина, урбанистика, Art&Science, Science Communication.
Вчера, 11:36
68 минут
Ольга Иванова

Своими корнями история Армении уходит в глубокую древность и неразрывно связана с историей всего Древнего мира. Но зачастую, зная в деталях историю Рима и Древней Греции, мы в гораздо меньшей степени осведомлены о событиях, происходивших в Античное время в Армении, оказавшейся на перекрестке цивилизаций Запада и Востока. В силу многих причин она не попала в должном объеме в учебники и незнакома тем, кто интересуется историей. Попытаемся хоть немного исправить эту несправедливость.

Позавчера, 10:07
6 минут
Сергей Васильев

Первые сейсмические данные о внутренней структуре Красной планеты показали ее удивительно толстую кору и большое расплавленное ядро.

Вчера, 15:39
5 минут
Илья Ведмеденко

Специалистам «Роскосмоса» удалось запустить основные двигатели нового модуля «Наука». Ранее сообщалось о технических неполадках, возникших после старта.

20 июля
10 минут
Мария Азарова

Ученые открыли новый сарбековирус RhGB01 после исследования всего 53 образцов фекалий подковообразных летучих мышей, расширив географические и видовые диапазоны коронавирусов, подобных SARS-CoV и SARS-CoV-2. Предположительно, они будут встречаться на всем ареале Rhinolophidae — от Австралии и Японии до Европы и Африки.

20 июля
4 минуты
Ольга Иванова

Двумерный магнит, сконструированный учеными, может найти применение в вычислительной технике и электронике, а также новых инструментах для изучения квантовой механики.

19 июля
2 минуты
Илья Ведмеденко

Состоялись новые тесты перспективного гиперзвукового комплекса «Циркон». В качестве носителя выступил фрегат проекта 22350.

13 июля
5 минут
Ольга Иванова

Международная команда ученых идентифицировала ДНК из почвы в грузинской пещере. Благодаря этому исследователям удалось восстановить геном человека возрастом 25 тысяч лет, не имея никаких скелетных останков.

8 июля
7 минут
Василий Парфенов

Подросток из бельгийского города Остенде стал вторым самым юным обладателем высшего образования в обозримой истории. Он с отличием окончил курс физики в Антверпенском университете и теперь собирается защитить магистерскую степень, а затем и докторскую диссертацию в этой области. Цель у него простая и понятная: увеличение продолжительности жизни человека вплоть до полного бессмертия за счет замены частей тела и органов механическими или искусственными.

11 июля
28 минут
Александр Березин

Еще год назад почти все были уверены, что эпидемия быстро закончится. Ведь научные исследования говорили: иммунитет переболевших очень сильный, а повторные заболевания крайне редки. Российские власти все еще верят в это: глава Роспотребнадзора Анна Попова утверждает, будто повторно болеет только 1%. От этого в России до сих пор ждут достижения «группового иммунитета» осенью — и, разумеется, снятия ковидных ограничений. К сожалению, это пустые надежды. Данные из других стран вообще не показывают реальной возможности достичь группового иммунитета за счет переболевших. Разбираемся в деталях.

[miniorange_social_login]

Комментарии

1 Комментарий

Как наночастицы будут доставляться в опухолевые клетки — понятно. Не понятно — как к ним потом неинвазивно подводить лазерное излучение?
Подтвердить?
Подтвердить?
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: