Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Три плюс два: физики определили тип квазичастиц в полупроводниковых углеродных нанотрубках
Ученые из Института общей физики имени А. М. Прохорова РАН и МФТИ совместно с коллегами исследовали влияние «ловушек» на оптические свойства углеродных нанотрубок.
При обработке соляной кислотой на поверхности трубок остаются отдельные атомы водорода. Они не образуют химических связей с поверхностью, и, значит, не вносят дефекты в структуру нанотрубки. Эти атомы служат «ловушками» — попавшая в их зону влияния квазичастица не может «сбежать» (становится локализованной). Основываясь на данных, полученных методами спектроскопии, физики пришли к выводу — в «ловушку» попались экситон (состоит из электрона и «дырки») и трион (экситон, к которому присоединились еще одна дырка или электрон). Результаты опубликованы в журнале Scientific reports.
Углеродные нанотрубки — легкий и прочный материал, перспективный со многих точек зрения. Пленки из углеродных нанотрубок с полупроводниковой проводимостью в будущем способны заменить оксид индия-олова — твердый прозрачный материал, который уже 60 лет используется для создания прозрачных электродов. Без редкоземельного индия дисплеи и сенсорные экраны станут дешевле, и кроме того, их можно будет без вреда сгибать и сворачивать.
За переключение пикселей на гибком экране отвечают тонкопленочные транзисторы. Чем быстрее заряд способен двигаться в материале, тем быстрее реагируют транзисторы и тем оперативнее отклик экрана. Для описания процессов переноса зарядов в полупроводниках физики ввели понятие «квазичастица». Примером может служить «дырка» — оставшееся после отрыва электрона свободное место на орбитали атома. Квазичастица экситон (от латинского «возбуждаю») представляет собой пару «электрон — дырка», которая движется, будто частицы «привязаны» друг к другу. Если к экситону присоединяется еще одна частица, получается трион.
Чтобы исследовать квазичастицы, ученые добавляли в водную суспензию углеродных нанотрубок с полупроводниковой проводимостью соляную кислоту. Далее авторы исследовали спектры поглощения суспензий с разным количеством соляной кислоты. Чем выше была концентрация кислоты, тем больше формировалось «ловушек» — осевших на поверхности трубок атомов водорода — и тем больше в них попадалось экситонов и трионов.
Энергия нанотрубок может принимать только определенные значения. Уровни энергии похожи на полки шкафа — книгу можно поставить на вторую или десятую, но нельзя на 9¾. Физики получают спектр поглощения, воздействуя на вещество излучением: если энергия, которую фотон может передать частице при столкновении, совпадает с «расстоянием между полками», частица поглощает его и переходит на более высокий уровень. Меняя длину волны падающего излучения, можно определить, когда оно поглощается веществом сильнее, и выяснить расположение «полок».
Кроме того, ученые исследовали спектры фотолюминесценции. При этом методе частицы переходят в возбужденное состояние под влиянием излучения, а затем возвращаются в исходное, испуская фотон (следуя аналогии, мы заталкиваем книги на верхние полки, а потом регистрируем шум от их падения на нижние). Ученые отметили, что с увеличением числа осевших на трубке атомов водорода снижается количество экситонов. Зато появляется новый энергетический переход, обозначенный как Х-полоса. Этот переход заметен также и на спектрах поглощения (рисунок 1). Исследователи предположили, что он соответствует попавшим в «ловушки» частицам.
Вышеописанные методы не позволяют отдельно рассматривать энергетические переходы, разделенные очень малыми промежутками времени (порядка 10-12 секунд), — они сливаются, и в итоге непонятно, какие именно частицы находятся в «ловушке». Поэтому далее спектры исследовали с помощью метода возбуждения-зондирования (pump-probe spectroscopy). Прибор испускает одновременно два лазерных луча, один из которых идет по короткому пути (импульс возбуждения), а другой — по длинному, и из-за этого слегка отстает (импульс зондирования). Длительность лазерного импульса составляет 10-15–10-12 секунд. С помощью заслонки исследователи блокировали каждый второй импульс возбуждения, таким образом измеряя разность поглощения света образцом в возбужденном (заслонка открыта) и невозбужденном (закрыта) состояниях. Меняя задержку между импульсами возбуждения и зондирования, ученые узнали, как эта разность меняется со временем (рисунок 2).
Обработка полученной этим методом информации позволила выделить энергетические уровни, формирующиеся через разное время после импульса (обозначены E1, X и Т, рисунок 3). Первые два соответствуют образованию экситона, свободного и пойманного в протонную ловушку (так как интенсивность X-полосы повышается при увеличении концентрации соляной кислоты). Третий формируется через заметное время (примерно одну пикосекунду) после формирования экситонных уровней, исходя из чего авторы связали его с образованием в «ловушке» новой квазичастицы, триона.
«Допированные одностенные углеродные нанотрубки уже продемонстрировали ранее свои уникальные свойства в качестве проводящих прозрачных электродов. В этой работе в таких нанотрубках мы выявили многочастичные оптические возбуждения и выяснили механизмы миграции энергии. Развитие этого направления открывает новые перспективы для нелинейной оптики», — сообщил один из авторов работы Тимофей Ерёмин, младший научный сотрудник лаборатории наноуглеродных материалов МФТИ.
Полученные данные способствуют более глубокому пониманию энергетической структуры углеродных нанотрубок с внесенными примесями, что важно не только с фундаментальной, но и с практической точки зрения. В дальнейшем ученые планируют исследовать уровни энергии углеродных нанотрубок с различными типами «ловушек».
Работа выполнена коллективом ученых из МФТИ, Института общей физики имени А. М. Прохорова РАН, МГУ, МИФИ, ФТИ имени Иоффе, а также университета Восточной Финляндии.
Знаменитое «правило десяти тысяч шагов» может быть не самым лучшим ориентиром в борьбе с инфарктом. Для поддержания здоровья сердца нужно ежедневно подниматься по лестнице, показало исследование.
К неожиданным прорывам в науке могут привести даже пустяковые вещи вроде чаинок в чашке. Парадокс чайного листа только на первый взгляд кажется неважным, но в свое время им заинтересовался Альберт Эйнштейн. Решение парадокса ученый представил на одной из конференций, чем вызвал ажиотаж у академической публики. Докладу немецкого физика уже почти 100 лет, а самому парадоксу — гораздо больше, но исследователи во всем мире продолжают использовать его в своих работах. Например, недавно китайские ученые применили его для изучения концентрации веществ в наножидкостях.
Американский журналист Ричард Грант в Smithsonian Magazine затронул вопрос: считать ли лесные деревья индивидуалистами, жестко конкурирующими за ресурсы, или они способны на взаимопонимание и взаимовыручку? Naked Science публикует перевод его статьи.
Космический телескоп «Гайя» позволил оценить скорость движения рекордного количества звезд в Млечном Пути, и новые данные оказались крайне неожиданными. Дело не только в том, что его масса упала во много раз: стало ясно, что сама структура Галактики не такая, как думали раньше.
Ученые применили современные методы, такие как микрокомпьютерная томография, получили сотни рентгеновских изображений и создали 3D-модель. Все для того, чтобы обнаружить следы опухоли во внутренней части черепа человека, жившего в середине IV века нашей эры. Это самый ранний случай менингиомы на Пиренейском полуострове — из тех, что известны науке.
К неожиданным прорывам в науке могут привести даже пустяковые вещи вроде чаинок в чашке. Парадокс чайного листа только на первый взгляд кажется неважным, но в свое время им заинтересовался Альберт Эйнштейн. Решение парадокса ученый представил на одной из конференций, чем вызвал ажиотаж у академической публики. Докладу немецкого физика уже почти 100 лет, а самому парадоксу — гораздо больше, но исследователи во всем мире продолжают использовать его в своих работах. Например, недавно китайские ученые применили его для изучения концентрации веществ в наножидкостях.
Космический телескоп «Гайя» позволил оценить скорость движения рекордного количества звезд в Млечном Пути, и новые данные оказались крайне неожиданными. Дело не только в том, что его масса упала во много раз: стало ясно, что сама структура Галактики не такая, как думали раньше.
Американский поэт и литературный критик Адам Кирш в эссе, опубликованном в The Guardian, рассуждает о том, как новые представления о возможностях животного разума меняют нас самих.
Исследователи из Швеции и Великобритания узнали, что «правило деревьев» да Винчи, который считал, что толщина всех веток дерева на любой его высоте, сложенная вместе, равна толщине ствола, ошибочно на микроуровне.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии