Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Найден способ улучшить чувствительность и точность квантового сенсора
Физики из Института спектроскопии РАН и НИУ ВШЭ смогли удержать атомы рубидия-87 в ловушке более четырех секунд. Использование их метода удержания повысит точность квантовых сенсоров, в работе которых важны как количество, так и время удержания атомов. Такие квантовые системы используют для исследований темной материи, улучшения навигационных систем и поиска полезных ископаемых.
Результаты исследования опубликованы в «Письмах в Журнал экспериментальной и теоретической физики». Квантовые сенсоры — устройства, которые используют эффекты квантовой механики для изучения материи. С их помощью стало возможно улавливать мельчайшие изменения в гравитационных и магнитных полях, а также с высокой точностью измерять ускорение и вращение Земли. Это направление современной прикладной физики способно изменить представления о точности измерений физических величин.
Атомы нельзя просто поместить в сенсор и успокоиться, они не останутся там и на минуту из-за теплового движения. Чтобы удерживать атомы в определенной области, ученые замедляют их, охлаждая разными способами в несколько этапов. Первый из них — охлаждение и захват атомов в магнито-оптические ловушки (МОЛ). Такие ловушки создают с помощью лазерных и магнитных полей. Для создания распределений магнитных полей в компактных устройствах понадобится атомный чип.
«Каждый из этапов охлаждения уменьшает количество атомов в рабочем объеме сенсора, а это снижает точность прибора. Поэтому нам важно собрать как можно больше атомов на этапе подготовки первичного ансамбля, чтобы точность квантового сенсора осталась высокой после всех стадий охлаждения», — объясняет ключевую проблему создания квантовых сенсоров на основе холодных атомов Дарья Быкова, преподаватель факультета физики, аспирантка НИУ ВШЭ.
Первичное охлаждение до температуры порядка сотни микрокельвинов значительно замедляет тепловое движение атомов, что помогает удерживать их в выбранной области пространства. Снижение температуры обеспечивают лазерным излучением: воздействие луча лазера заставляет атомы терять кинетическую энергию и двигаться медленнее. Вместе лазерное излучение и магнитное поле удерживают атомы на месте достаточно долго для проведения экспериментов, то есть формируют ловушку, из которой атомам непросто выбраться. На следующей стадии, уже без лазерного поля, атомы охлаждают до температуры около сотни нанокельвинов, то есть еще в тысячу раз.
«Можно сказать, что мы “толкаем” атомы лазерным излучением к центру ловушки. Они оказываются в ней заперты магнитным полем и постоянным давлением света», — комментирует Дарья Быкова.
Одна из эффективных технологий, которая дает исследователям возможность уменьшать размеры квантовых сенсоров и улучшать их энергоэффективность, — атомный чип. Он формирует вблизи своей поверхности магнитное поле, необходимое для создания ловушек, и позволяет охлаждать и локализовывать ансамбли атомов вблизи своей поверхности.
В отделе лазерной спектроскопии Института спектроскопии РАН студенты и аспиранты НИУ ВШЭ сформировали ловушки с применением технологии атомного чипа. В этой конфигурации они смогли удержать атомы в нужной области на продолжительное для квантовых технологий время — на четыре секунды.
Исследователи экспериментально показали, что при использовании атомного пучка для загрузки атомов в МОЛ на чипе количество локализованных атомов резко возрастает по сравнению с загрузкой из атомных паров в вакуумной камере. Также они подтвердили, что могут эффективно контролировать загрузку атомной ловушки. Они смогли корректировать расположение пучка атомов с помощью лазерных полей. Такое сочетание технологий значительно увеличило скорость загрузки при сохранении ультравысокого вакуума в области атомного чипа по сравнению с предыдущими экспериментами.
«Мы нашли оптимальные условия загрузки в МОЛ и удержали достаточное для стабильной работы количество атомов в ловушке — 4,9×10⁷. Время жизни ансамбля — 4,1 секунды, этого хватит, чтобы провести следующие стадии более глубокого охлаждения и создать прототип квантового сенсора», — рассказал Антон Афанасьев, доцент базовой кафедры квантовой оптики и нанофотоники Института спектроскопии РАН факультета физики НИУ ВШЭ, старший научный сотрудник Института спектроскопии РАН.
Работа поддержана Научным фондом НИУ ВШЭ и выполнена в отделе лазерной спектроскопии Института спектроскопии РАН.
Многие говорят, что занимаются спортом для поддержания здоровья. Однако ученые с помощью инструментов искусственного интеллекта и машинного обучения установили, что на самом деле большинство людей к тренировкам подталкивает несколько другая причина.
Еще в 2017 году у шестой планеты нашей системы насчитывали всего 50 лун. Благодаря новым наблюдениям их число выросло уже до 274. Это вдвое больше, чем у остальных планет Солнечной системы, вместе взятых. Астрономы, зафиксировавшие открытие, полагают, что такое изобилие — итог катастрофического разрушения. В то же время работа крымских ученых, опубликованная еще в 1995 году, предсказала группу спутников с орбитами как у многих из вновь открытых, без предположений о каких-либо катастрофах.
Этой зимой в районе озера Гурон в штате Мичиган (США) заметили необычную полярную сову с ярко-оранжевым оперением вместо традиционного белоснежного. Снимки птицы, сделанные местными фотографами и опубликованные в соцсетях, привлекли внимание орнитологов-любителей и ученых. Специалисты не знают, как сова, прозванная Рыжиком, приобрела свою уникальную расцветку, и выдвинули на этот счет разные гипотезы.
В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.
Многие говорят, что занимаются спортом для поддержания здоровья. Однако ученые с помощью инструментов искусственного интеллекта и машинного обучения установили, что на самом деле большинство людей к тренировкам подталкивает несколько другая причина.
В наши дни на кельтских языках говорят лишь в прибрежных областях северо-запада Европы. А две-три тысячи лет назад они охватывали большую часть европейского населения. Традиционно их связывали с археологической культурой колоколовидных кубков, есть работы об их появлении в Британии, на Иберийском полуострове, юго-западе Германии. А вот о прародине мнения разошлись. В новом исследовании ученые провели обширный генетический анализ древней ДНК и протестировали гипотезы происхождения этой группы индоевропейских языков.
В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.
Исследователи из Южной Кореи и Канады нашли новое объяснение «парадоксу счастья». Они обнаружили, что попытки стать счастливее приводят к противоположному результату, потому что истощают систему самоконтроля.
Ученые МФТИ представили теоретическую работу, посвященную введению дополнительных соотношений неопределенности Гейзенберга в (1+3)-мерном пространстве Минковского и в (1+4)-мерной расширенной модели пространства. Это исследование может изменить наши представления о времени, пространстве и материи.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии