Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В России придумали надежный способ передачи больших данных в космосе
Команда российских ученых, куда вошли специалисты Университета ИТМО, предложила простой способ повысить пропускную способность и надежность передачи данных свободно-пространственной оптической связи в космосе. Они научились управлять структурой и составом световой «гребенки» из вихревых пучков лазера. Каждый пучок при этом работает как отдельный канал передачи информации.
Результаты исследования опубликованы в журнале Nano Letters. Для передачи информации между космическими спутниками используется свободно-пространственная оптическая связь. Ее устройство похоже на оптический Wi-Fi: информация кодируется в лазерный пучок, и он транслируется получателю. Технология не требует оптоволоконного кабеля, поэтому ее можно быстро и просто развернуть в любом месте. Но пока пропускная способность свободно-пространственной оптической связи достигает скорости до 20 Гбит/с (волоконно-оптические системы связи могут поддерживать скорость передачи данных до 100 Тбит/с), а на стабильность оптического сигнала влияют внешние факторы, например, облака и пыль.
Создать надежное высокоскоростное соединение могут «закрученные» световые пучки — вихри. В отличие от «незакрученного» света, они обладают не только частотой и амплитудой (интенсивность свечения), но и проекцией орбитального углового момента. Она представляет дополнительный параметр, который позволяет создать несколько независимых каналов передачи данных, подобных разным частотам в радиосвязи. Чем больше проекций, тем больше информации можно закодировать в один луч. При этом проекции не смешиваются — это гарантирует надежную передачу данных.
Вихревые световые пучки с проекцией орбитального углового момента можно создавать с помощью технологии световой «орбитальной гребенки». Она генерирует сразу множество «закрученных» пучков, каждый со своим уникальным значением проекции орбитального углового момента. Однако саму «орбитальную гребенку» обычно формируют с помощью технически сложных устройств — специальных модуляторов света, метаповерхностей и других продвинутых оптических элементов.
Ученые Нового физтеха ИТМО разработали более простой и надежный способ получения набора вихревых пучков с разными значениями проекций орбитального углового момента. Особенность разработки в том, что исследователи могут не просто создать световую «гребенку», а управлять ею и таким образом влиять на каждый отдельный вихревой пучок. Это позволит более надежно кодировать и передавать информацию, увеличивая пропускную способность и стабильность оптических каналов связи. В исследовании также приняли участие ученые Института общей и неорганической химии имени Н.С. Курнакова РАН и Национального исследовательского университета «МИЭТ».
Световая «гребенка» создается в несколько этапов. Лазерный луч от фемтосекундного лазера проходит через специальную дифракционную решетку с топологическим дефектом, становится вихревым пучком и приобретает новый параметр — проекцию орбитального углового момента. Получившийся пучок похож не на сплошное круглое пятно, а на «бублик». Затем он меняет тип моды (состояния электромагнитного поля) в первом конвертере и проходит через нелинейный кристалл. Благодаря этим двум преобразованиям форма «бублика» плавно переходит в набор упорядоченных точек, как будто их прочесали расческой, частота вихревого пучка удваивается, и одновременно с этим в пучке увеличивается количество компонентов с проекцией орбитального углового момента. В этот момент структура пучка фиксируется и становится устойчивой к искажениям. Последний конвертер преобразует набор точек в настоящую световую «орбитальную гребенку», напоминающую свиной пятачок, с разными значениями проекций орбитального момента. Они не взаимодействуют друг с другом, и каждая проекция передает свою часть информации независимо.
«Наш подход — это сильная нелинейность, которую мы используем в качестве оптического преобразования для записи информации. Мы преобразуем исходный вихревой пучок с помощью тонкого кристалла бета бората бария в набор вихревых состояний — «орбитальную гребенку». Первый конвертер позволяет нам регулировать, какие именно амплитуды входят в состав пучка после нелинейного кристалла. Меняя параметры исходного пучка с его помощью, мы кодируем информацию в амплитудную структуру гребенки. Эта структура устойчива к линейным искажениям, и без внешнего сильного нелинейного воздействия также остается стабильной при передаче данных. Поэтому мы можем кодировать большие объемы данных и передавать их, например, от спутника к спутнику, не боясь что-то потерять», — объяснил один из авторов исследования, ведущий научный сотрудник физического факультета ИТМО Станислав Батурин.
Новый способ создания световой «гребенки» потенциально можно использовать для настройки надежной и быстрой оптической связи в космосе. В перспективе ученые планируют разработать методы, которые помогут передавать сигнал не только в вакууме, но и воздухе.
«Следующим этапом станет разработка демодулятора — устройства, способного «разложить» полученный оптический сигнал на отдельные каналы по орбитальному угловому моменту. В сочетании с генератором орбитальной гребенки это позволит создать полноценную систему передачи данных, где передатчик и приемник будут работать как оптический аналог многоканальной радиосвязи: передатчик формирует несколько независимых каналов в одном пучке света, а демодулятор выделяет каждый канал для дальнейшей обработки», — рассказал первый автор исследования, аспирант физического факультета ИТМО Даниил Литвинов.
Исследование поддержано программой «Приоритет 2030» и грантами Российского научного фонда.
Согласно учебникам истории, в бронзовом веке в казахской степи кочевали лишь немногочисленные племена со своими стадами. Но в начале 2000-х там обнаружили древнее поселение с остатками крупных домов, которое могло быть административным либо культурным центром. Это навело ученых на мысль, что жизнь в степи складывалась куда сложнее и была более организованной, чем предполагалось. Международная команда ученых представила новые результаты исследования этого поселения и выяснила, что на самом деле оно представляло собой крупнейший в этом регионе протогородской центр с масштабным производством оловянистой бронзы.
В темных лабиринтах подземного муравейника разыгрывается коварный сценарий, достойный политического триллера. Вместо того чтобы силой захватить трон, королева одного вида муравьев применяет хитрую тактику. Она проникает в чужую крепость и с помощью поддельного химического сигнала подстрекает верную стражу к свержению собственной повелительницы. Результат — жестокая казнь законной королевы и добровольное подчинение всего муравейника новой владычице.
Крошечная глиняная фигурка возрастом 12 тысяч лет, найденная в Израиле еще в 2019 году, долгое время озадачивала ученых. Дело в том, что на ней изображен сюжет, который никак не могли расшифровать. После тщательного анализа это удалось сделать международной команде исследователей. Они пришли к выводу, что на статуэтке, вероятно, изображен анимистический ритуал.
Ю-Цон Тан (YuCong Tang) — концептуальный художник из Китая. Научно-фантастические мотивы — одно из основных направлений его творчества. Он исследует, как научные открытия и технологии будущего трансформируют среду обитания.
Согласно учебникам истории, в бронзовом веке в казахской степи кочевали лишь немногочисленные племена со своими стадами. Но в начале 2000-х там обнаружили древнее поселение с остатками крупных домов, которое могло быть административным либо культурным центром. Это навело ученых на мысль, что жизнь в степи складывалась куда сложнее и была более организованной, чем предполагалось. Международная команда ученых представила новые результаты исследования этого поселения и выяснила, что на самом деле оно представляло собой крупнейший в этом регионе протогородской центр с масштабным производством оловянистой бронзы.
Наблюдая за сверхновой 2024 ggi спустя всего 26 часов после вспышки, астрономы напрямую определили форму ударной волны в момент ее прорыва из звезды. Открытие позволит уточнить механизмы гибели массивных светил и может привести к пересмотру существующих моделей возникновения сверхновых.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
