Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В России придумали надежный способ передачи больших данных в космосе
Команда российских ученых, куда вошли специалисты Университета ИТМО, предложила простой способ повысить пропускную способность и надежность передачи данных свободно-пространственной оптической связи в космосе. Они научились управлять структурой и составом световой «гребенки» из вихревых пучков лазера. Каждый пучок при этом работает как отдельный канал передачи информации.
Результаты исследования опубликованы в журнале Nano Letters. Для передачи информации между космическими спутниками используется свободно-пространственная оптическая связь. Ее устройство похоже на оптический Wi-Fi: информация кодируется в лазерный пучок, и он транслируется получателю. Технология не требует оптоволоконного кабеля, поэтому ее можно быстро и просто развернуть в любом месте. Но пока пропускная способность свободно-пространственной оптической связи достигает скорости до 20 Гбит/с (волоконно-оптические системы связи могут поддерживать скорость передачи данных до 100 Тбит/с), а на стабильность оптического сигнала влияют внешние факторы, например, облака и пыль.
Создать надежное высокоскоростное соединение могут «закрученные» световые пучки — вихри. В отличие от «незакрученного» света, они обладают не только частотой и амплитудой (интенсивность свечения), но и проекцией орбитального углового момента. Она представляет дополнительный параметр, который позволяет создать несколько независимых каналов передачи данных, подобных разным частотам в радиосвязи. Чем больше проекций, тем больше информации можно закодировать в один луч. При этом проекции не смешиваются — это гарантирует надежную передачу данных.
Вихревые световые пучки с проекцией орбитального углового момента можно создавать с помощью технологии световой «орбитальной гребенки». Она генерирует сразу множество «закрученных» пучков, каждый со своим уникальным значением проекции орбитального углового момента. Однако саму «орбитальную гребенку» обычно формируют с помощью технически сложных устройств — специальных модуляторов света, метаповерхностей и других продвинутых оптических элементов.
Ученые Нового физтеха ИТМО разработали более простой и надежный способ получения набора вихревых пучков с разными значениями проекций орбитального углового момента. Особенность разработки в том, что исследователи могут не просто создать световую «гребенку», а управлять ею и таким образом влиять на каждый отдельный вихревой пучок. Это позволит более надежно кодировать и передавать информацию, увеличивая пропускную способность и стабильность оптических каналов связи. В исследовании также приняли участие ученые Института общей и неорганической химии имени Н.С. Курнакова РАН и Национального исследовательского университета «МИЭТ».
Световая «гребенка» создается в несколько этапов. Лазерный луч от фемтосекундного лазера проходит через специальную дифракционную решетку с топологическим дефектом, становится вихревым пучком и приобретает новый параметр — проекцию орбитального углового момента. Получившийся пучок похож не на сплошное круглое пятно, а на «бублик». Затем он меняет тип моды (состояния электромагнитного поля) в первом конвертере и проходит через нелинейный кристалл. Благодаря этим двум преобразованиям форма «бублика» плавно переходит в набор упорядоченных точек, как будто их прочесали расческой, частота вихревого пучка удваивается, и одновременно с этим в пучке увеличивается количество компонентов с проекцией орбитального углового момента. В этот момент структура пучка фиксируется и становится устойчивой к искажениям. Последний конвертер преобразует набор точек в настоящую световую «орбитальную гребенку», напоминающую свиной пятачок, с разными значениями проекций орбитального момента. Они не взаимодействуют друг с другом, и каждая проекция передает свою часть информации независимо.
«Наш подход — это сильная нелинейность, которую мы используем в качестве оптического преобразования для записи информации. Мы преобразуем исходный вихревой пучок с помощью тонкого кристалла бета бората бария в набор вихревых состояний — «орбитальную гребенку». Первый конвертер позволяет нам регулировать, какие именно амплитуды входят в состав пучка после нелинейного кристалла. Меняя параметры исходного пучка с его помощью, мы кодируем информацию в амплитудную структуру гребенки. Эта структура устойчива к линейным искажениям, и без внешнего сильного нелинейного воздействия также остается стабильной при передаче данных. Поэтому мы можем кодировать большие объемы данных и передавать их, например, от спутника к спутнику, не боясь что-то потерять», — объяснил один из авторов исследования, ведущий научный сотрудник физического факультета ИТМО Станислав Батурин.
Новый способ создания световой «гребенки» потенциально можно использовать для настройки надежной и быстрой оптической связи в космосе. В перспективе ученые планируют разработать методы, которые помогут передавать сигнал не только в вакууме, но и воздухе.
«Следующим этапом станет разработка демодулятора — устройства, способного «разложить» полученный оптический сигнал на отдельные каналы по орбитальному угловому моменту. В сочетании с генератором орбитальной гребенки это позволит создать полноценную систему передачи данных, где передатчик и приемник будут работать как оптический аналог многоканальной радиосвязи: передатчик формирует несколько независимых каналов в одном пучке света, а демодулятор выделяет каждый канал для дальнейшей обработки», — рассказал первый автор исследования, аспирант физического факультета ИТМО Даниил Литвинов.
Исследование поддержано программой «Приоритет 2030» и грантами Российского научного фонда.
К любопытным выводам привели наблюдения японских ученых за пестролицыми буревестниками. Оказалось, эти птицы испражняются в основном на лету, намеренно избегая такой возможности на поверхности воды. Очевидно, предположили исследователи, это облегчает движения в воздухе взрослым особям с добычей во рту.
Люди, которые были на грани смерти, затем иногда рассказывают, как мчались навстречу необычайно яркому свету или видели всю свою жизнь, проносящуюся перед глазами. Эти переживания на первый взгляд напоминают галлюцинации под воздействием некоторых психоделиков. Но есть и существенные различия, обнаружили исследователи из Великобритании.
Биотехнологи из Ноттингемского университета (Великобритания) воспроизвели процесс естественной ферментации какао-бобов в лаборатории, чтобы проверить, можно ли улучшить вкус готового продукта «вручную». Оказалось, что правильно подобранная колония микроорганизмов может внести свои нотки и определить качество будущего шоколада.
Астрономы подсчитали, что с поверхности летящего по Солнечной системе межзвездного объекта 3I/ATLAS каждую секунду испаряется около 40 килограммов водяного льда. Такую сильную кометную активность он проявил, будучи в три с половиной раза дальше Земли от Солнца. По мнению ученых, это довольно необычно.
За последнее десятилетие ученые создали несколько сложных систем «мозг — компьютер», которые позволяли преобразовывать мозговую активность людей, лишившихся способности говорить из-за различных заболеваний, в речь. Однако до сих пор удавалось расшифровать лишь небольшое количество слов. Теперь в США создали алгоритм, благодаря которому удалось распознать до 54 процентов «речи».
Изображение блазара PKS 1424+240, полученное с помощью радиоинтерферометра VLBA, напомнило астрономам легендарное «Око Саурона» из «Властелина колец» — джет, пронизывающий кольцеобразное магнитное поле объекта, устремлен к нашей планете, а сам блазар может оказаться одним из наиболее ярких источников нейтрино в космосе.
Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.
Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.
Команда исследователей из Сколтеха, МФТИ, Института искусственного интеллекта AIRI и других научных центров разработала метод, позволяющий не просто отличать тексты, написанные человеком, от сгенерированных нейросетью, но и понимать, по каким именно признакам классификатор принимает решение о том, является ли текст генерацией или нет. Анализируя внутренние состояния глубоких слоев языковой модели, ученые смогли выделить и интерпретировать численные признаки, отвечающие за стилистику, сложность и «степень уверенности» текста.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии