• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
06.12.2024, 11:01
НИУ ВШЭ
2
324

Созданы нейросети для обнаружения сгенерированных вставок в текстах

❋ 4.5

Команда исследователей с участием Александра Ширнина из НИУ ВШЭ создала две модели для обнаружения в научных текстах частей, сгенерированных искусственным интеллектом. В системе AIpom соединены два типа моделей — декодер и энкодер, что позволяет ей эффективнее находить сгенерированные вставки. Система Papilusion подходит для распознания исправлений с помощью синонимов и кратких пересказов, сгенерированных нейросетью, в работе она использует  модели одного типа — энкодеры. В перспективе подобные модели помогут в проверке оригинальности и достоверности научных публикаций.

В НИУ ВШЭ создали нейросети для обнаружения сгенерированных вставок в текстах / © Obi - @pixel9propics, unsplash.com

Статьи о  системах Papilusion и AIpom опубликованы в цифровом архиве ACL Anthology. Чем популярнее становятся языковые модели, такие как ChatGPT или GigaChat, и чем больше их используют, тем сложнее отличить оригинальный текст, написанный человеком, от сгенерированного. Научные публикации и выпускные работы уже пишут с помощью искусственного интеллекта. Поэтому важно разрабатывать инструменты, которые помогут выявлять в текстах ИИ-вставки. Команда исследователей с участием НИУ ВШЭ предложила свои решения этой задачи на международных научных соревнованиях SemEval 2024 и DAGPap24. 

Модель AIpom использовали для определения границ между оригинальными и сгенерированными фрагментами в научных статьях. В каждой работе соотношение машинного и авторского текста было разным. Для обучения моделей организаторы предоставляли тексты на одну тематику, но на этапе проверки темы менялись, что осложняло задачу. 

«Модели неплохо справляются со знакомыми темами, но если дать новую тематику, то результат становится хуже, — считает один из авторов статьи, стажер-исследователь Научно-учебной лаборатории моделей и методов вычислительной прагматики факультета компьютерных наук НИУ ВШЭ Александр Ширнин. — Это как студент, который, научившись решать один тип задач, не сможет так же легко и правильно решить задачу на незнакомую тему или из другого предмета».

Для повышения эффективности системы исследователи решили комбинировать две модели — декодер и энкодер. На первом этапе использовался декодер — нейросеть, на вход которой подавали инструкцию плюс исходный текст, а на выходе получали фрагмент текста, предположительно сгенерированный ИИ. Затем в оригинальном тексте с помощью метки <BREAK> выделялся участок, где, по прогнозу модели, начинался сгенерированный фрагмент. Энкодер работал с текстом, размеченным на первом этапе, и уточнял предсказания декодера. Для этого он классифицировал каждый токен — минимальную единицу текста в виде слова или части слова — и указывал, написан он человеком или ИИ. Такой подход позволил улучшить точность по сравнению с системами, где применялся только один тип моделей: AIpom заняла 2-е место на научном соревновании SemEval-2024. 

Модель Papilusion также отличала написанный текст от сгенерированного. С ее помощью участки текста разделяли на четыре категории: написанный человеком, исправленный с помощью синонимов, сгенерированный моделью и кратко пересказанный. Задача была правильно определить каждую из категорий. Количество категорий и длина вставок в текстах различались. 

В данном случае разработчики использовали три модели, но уже одного типа — энкодеры. Их обучали предсказывать одну из четырех категорий для каждого токена из текста, все модели обучали независимо друг от друга. Когда модель ошибалась, ее штрафовали и дообучали, при этом замораживая нижние слои модели. 

«В каждой модели в зависимости от архитектуры предусмотрено разное количество слоев. Когда мы обучаем модель, можно не трогать, например, первые десять слоев и менять числа только в двух последних. Так делают, чтобы при обучении не потерять часть важных данных, заложенных в первых слоях, — объясняет Александр Ширнин. — Можно сравнить это со спортсменом, который ошибается в движении рукой. Мы должны объяснить ему только это, а не обнулить его знания и обучать заново, потому что тогда он может разучиться правильно двигаться в целом. Здесь это работает по той же логике. Метод не универсален и на некоторых моделях может быть неэффективен, но в нашем случае это сработало». 

Три энкодера независимо друг от друга определяли категорию для каждого токена (слова). Итоговый выбор системы основывался на том, какая из категорий набрала большинство голосов. На соревновании система Papilusion заняла 6-е место из 30. 

Как отмечают исследователи, сейчас модели для выявления ИИ работают хорошо, но все еще имеют ограничения,  прежде всего плохо обрабатывают данные, выходящие за рамки обучающих, и в целом не хватает разнообразных данных для обучения моделей. 

«Чтобы получать больше данных, нужно сфокусироваться на их сборе. Этим занимаются и компании, и лаборатории. Конкретно для такого типа задач нужно собирать датасеты, где в текстах используются несколько ИИ-моделей и методов исправления, — комментирует исследователь. — То есть не просто продолжить текст с помощью одной модели, а создавать более реалистичные ситуации: где-то попросить модель дополнить текст, переписать начало, чтобы оно лучше подходило, что-то удалить из него, попробовать часть сгенерировать в новом стиле с помощью другого промпта (инструкции) для модели. Также, конечно, важно собирать данные и на других языках, на разные тематики». 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Национальный исследовательский университет «Высшая школа экономики» — один из крупнейших и самых востребованных вузов России. В университете учится 54 тысячи студентов и работает почти 4,5 тысячи учёных и преподавателей. НИУ ВШЭ ведёт фундаментальные и прикладные исследования в области социально-экономических, гуманитарных, юридических, инженерных, компьютерных, физико-математических наук, а также креативных индустрий. В университете действуют 47 центров превосходства, или международных лабораторий. Вышка объединяет ведущих мировых исследователей в области изучения мозга, нейротехнологий, биоинформатики и искусственного интеллекта. Университет входит в первую группу программы «Приоритет-2030» в направлении «Исследовательское лидерство». Кампусы НИУ ВШЭ расположены в четырех городах — Москве, Санкт-Петербурге, Нижнем Новгороде и Перми, а также в цифровом пространстве — «Вышка Онлайн».
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
27 августа, 14:52
Елена Авдеева

Исследователи из Японии и Италии нашли способ узнать возраст самой большой планеты Солнечной системы. С помощью компьютерного моделирования ученые рассчитали, что Юпитер «родился» спустя 1,8 миллиона лет после ее образования.

27 августа, 15:30
Денис Яковлев

Ученые из Института демографии Общества Макса Планка (Германия), Висконсинского университета в Мэдисоне (США) и Национального института демографических исследований (Франция) проанализировали материалы из базы данных Human Mortality Database (HMD) — ведущего источника информации о смертности в развитых странах. Они попытались спрогнозировать, сохранятся ли темпы роста продолжительности жизни для людей, родившихся в период с 1939 по 2000...

27 августа, 20:56
Evgenia Vavilova

Пиво — важный для человеческой цивилизации продукт. Помимо питательной и культурной ценности, оно позволяет исследовать многие химические, физические и биологические процессы. Европейские ученые провели семилетнее исследование пенных шапок напитка и нашли причину различий во времени жизни пузырькового покрытия.

25 августа, 13:36
Юлия Трепалина

Группа ученых из Индии с помощью дронов впервые задокументировала полный цикл брачного поведения горбатых дельфинов вида Sousa plumbea. Исследователи полагают, что наблюдения помогут в сохранении этих животных, обитающих в прибрежных водах Индийского океана и страдающих от деятельности человека.

22 августа, 10:48
ПНИПУ

К 2025 году около 30 стран приняли программы по развитию водородной энергетики, а совокупный объем инвестиций в эту область превысил 150 миллиардов долларов. Эксперты полагают, что замена дизельных авто на водородные снизит выбросы на 80-90%, а водородные самолеты способны уменьшить углеродный след на 50-75%. Но при использовании водорода в двигателях внутреннего или внешнего сгорания, происходит взаимодействие с металлом, что наиболее опасно при высоких температурах. Это может вызвать их разрушение, в результате чего возникает риск пожара или взрыва с тяжелыми последствиями для пассажиров. Ученые Пермского Политеха впервые выяснили, как водород влияет на металлы в условиях экстремальных температур (800 градусов и выше), в которых работают двигатели самолетов и машин. Это продвинет авиационную, машиностроительную и нефтегазовую отрасли в безопасном использовании водорода в качестве источника энергии.

25 августа, 15:11
Денис Яковлев

Врачи очень часто говорят о том, что необходимо как можно скорее похудеть, отказаться от алкоголя или изменить рацион, чтобы снизить уровень холестерина. Но рекомендации, которые действительно помогают сохранить здоровье, могут навредить уже больному человеку, показывают некоторые исследования.

6 августа, 20:59
Татьяна Пичугина

Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.

30 июля, 08:08
Редакция Naked Science

Возраст находок — около 5500 лет, они лежат во множестве круглых ям, чьи стены укреплены кирпичом. Среди обнаруженных орудий из кремня есть и сотни неиспользованных, которые могут быть ритуальным подношением богам.

31 июля, 08:28
Полина Меньшова

Гостингом (от английского «призрак») называют ситуацию, когда человек прекращает общение или отношения, «пропадая с радаров» без объяснения причин. Исследователи из США сымитировали такое поведение, а затем проанализировали реакцию людей на него.

[miniorange_social_login]

Комментарии

2 Комментария
А Ко
06.12.2024
-
1
+
Разве в антиплагиате уже не реализовали подобную проверку?
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно