• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
15 февраля
НИУ ВШЭ
388

В НИУ ВШЭ улучшили модель диффузионной нейросети

4.4

Ученые Центра искусственного интеллекта и факультета компьютерных наук НИУ ВШЭ, а также Института искусственного интеллекта AIRI и Sber AI разработали новую структуру диффузионной модели, для которой возможно задать восемь видов распределения шума. Вместо классической структуры модели в виде цепи Маркова и применения нормального распределения ученые предложили звездообразную модель, где возможно выбирать тип распределения. Это поможет решать задачи в разных геометрических пространствах с помощью диффузионных моделей.

Российские ученые улучшили модель диффузионной нейросети
Российские ученые улучшили модель диффузионной нейросети / © Getty images

Результаты работы были представлены на конференции NeurIPS 2023. За последние 20 лет генеративные нейросети стали работать лучше. Если раньше они создавали не очень качественные тексты и изображения за один шаг, то с появлением диффузионных моделей — разновидности генеративных нейросетей — процесс стал постепенным, и результат улучшился.

Диффузионные нейросети основаны на вероятностной модели шумоподавления и диффузии, или DDPM. Модель работает так: на каждом этапе к данным добавляются случайные изменения. Например, с каждым шагом могут изменяться цвета или яркость. Эти изменения постепенно уменьшают шум и делают данные более похожими на нужный результат до тех пор, пока из хаоса не получится конечное изображение.

В основе модели лежит цепь Маркова, которая постепенно добавляет шум, а затем так же постепенно обращает процесс диффузии вспять, чтобы получить исходные данные, например картинку с котиком. Нейросеть учится этим преобразованиям на тренировочных данных, в которых есть пример оригинального изображения и его зашумленных версий.

Такие модели хорошо генерируют картинки, звуки, но с более сложными задачами, например генерированием объемных структур, справляются хуже. Это происходит из-за того, что шаги зашумления диффузионной модели работают только с помощью нормального распределения. И если исходные объекты имеют ограничения, их невозможно задать и сохранить на протяжении всех шагов.

Иллюстрация процесса диффузии / © cvpr2022-tutorial-diffusion-models.github.io

Команда исследователей предложила новый тип модели, который упрощает процесс работы с данными. В новой структуре диффузионной модели стало возможным изменять тип распределения шума. Чтобы этого добиться, исследователи преобразовали структуру модели в звездообразную, где все состояния были не внутри марковской цепочки, а расходились из исходного объекта в стороны.

«Например, задача нейросети — сгенерировать молекулу. В составе молекулы есть три типа атомов, которые задаются с помощью дискретных данных. Если зашумить эти данные нормальным распределением, то типы атомов станут принимать не существующие в реальном мире значения. В звездообразной модели мы можем подобрать нужный тип распределения, при котором данные не будут искажаться», — комментирует один из авторов статьи, стажер-исследователь Центра глубинного обучения и байесовских методов Института искусственного интеллекта и цифровых наук факультета компьютерных наук НИУ ВШЭ Андрей Охотин.

Сравнение оригинального изображения, результата работы классической диффузионной модели и звездообразной диффузионной модели при генерации двухмерного симплекса / © Пресс-служба НИУ ВШЭ

В структуре модели две компоненты. Первая отвечает за зашумление объекта путем пошагового удаления информации, а вторая учится делать шаг назад в этой цепочке. Модель возможно задать для восьми видов распределений, которые поддерживают ограничения данных.

«Мы перешли к новой структуре обратного процесса. Если раньше каждое следующее состояние можно было получить, используя только одно предыдущее, то теперь каждое состояние объекта зависит от всех предыдущих, — объясняет научный руководитель Института искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ, научный консультант AIRI Дмитрий Ветров. — При такой структуре информация собирается в один объект, который мы назвали хвостовой статистикой, и подается в нейронную сеть, чтобы она сделала следующий шаг. Это позволяет эффективнее обучать модель».

Ученые сравнили эффективность звездообразной модели с классическими диффузионными моделями. На задачах генерации текста в обычном режиме модель ученых работала на таком же уровне качества. А в ускоренном режиме (при меньшем числе шагов генерации) модель для изображений работала лучше и генерировала набор данных ближе к исходному.

Сравнение оригинального изображения и результата звездообразной диффузионной модели / © Пресс-служба НИУ ВШЭ

Со сложными задачами, связанными с генерацией точек в разных геометрических пространствах — сфере, симплексе и пространстве матриц, описывающих эллипсы, — звездообразная модель справлялась лучше, чем классическая диффузионная модель.

В задаче с генерацией точек на сфере модели нужно было научиться отмечать точки в тех местах, где, согласно геодезическому набору данных 2020 года, на поверхности Земли чаще всего происходили пожары. После этого сравнивались точки, которые были в действительности, и те, что сгенерировала модель. Модель сгенерировала точки максимально приближенно к оригиналу. Полученные результаты сопоставимы с существующими методами решения этой задачи.

«В этой статье мы предложили более универсальную диффузионную модель, которая позволяет генерировать объекты сложной структуры. Это поможет применять такие методы для более широкого класса задач из естественных наук, например из биологии, физики, химии, где есть структурные ограничения при генерации объектов: молекул, состояний элементарных частиц, химических соединений», — комментирует один из авторов статьи, младший научный сотрудник Центра глубинного обучения и байесовских методов Института искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ, научный сотрудник AIRI Айбек Аланов.

Исследование поддержано грантом для исследовательских центров в области искусственного интеллекта, предоставленным Аналитическим центром при Правительстве России.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Национальный исследовательский университет «Высшая школа экономики» — один из крупнейших и самых востребованных вузов России. В университете учится 54 тысячи студентов и работает почти 4,5 тысячи учёных и преподавателей. НИУ ВШЭ ведёт фундаментальные и прикладные исследования в области социально-экономических, гуманитарных, юридических, инженерных, компьютерных, физико-математических наук, а также креативных индустрий. В университете действуют 47 центров превосходства, или международных лабораторий. Вышка объединяет ведущих мировых исследователей в области изучения мозга, нейротехнологий, биоинформатики и искусственного интеллекта. Университет входит в первую группу программы «Приоритет-2030» в направлении «Исследовательское лидерство». Кампусы НИУ ВШЭ расположены в четырех городах — Москве, Санкт-Петербурге, Нижнем Новгороде и Перми, а также в цифровом пространстве — «Вышка Онлайн».
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Позавчера, 17:55
Наталия Лескова

Зачем нужно изучать ядра планет? Как зарождалась эта наука и почему она важна? Что такое гамма-всплески и зачем нам знать, откуда они идут? Остается ли Россия великой космической державой и зачем вообще это всё надо? Об этом рассказывает Игорь Георгиевич Митрофанов, руководитель отдела ядерной планетологии Института космических исследований РАН, доктор физико-математических наук, академик Международной академии астронавтики.

Позавчера, 11:06
Evgenia

Китайские исследователи удерживали изотоп иттербия-173 в состоянии «кота Шредингера» более 20 минут. Эта работа приблизила точность измерений фазового сдвига квантовой системы к теоретически возможному пределу.

3 часа назад
Юлия Трепалина

Постановка верного диагноза порой напоминает детективное расследование. Чтобы найти «преступника» — причину болезни, врачам нередко приходится перебрать множество версий и потенциальных подозреваемых. Об одном таком «деле» недавно рассказали американские медики: им долго не удавалось определить, что вызывало приступы боли в животе у в остальном здоровой 16-летней девушки. В итоге виновником оказалось редкое расстройство под названием синдром Рапунцель.

19 ноября
Андрей

Американские ученые проанализировали данные о поедании фекалий животными, чтобы выяснить, какие причины стоят за этим поведением и какие закономерности можно проследить. В результате они разделили всю выборку более чем из 150 видов на семь категорий по тому, что заставляет зверей питаться таким сомнительным продуктом.

18 ноября
Юлия Трепалина

Работать под началом шефа-абьюзера тяжело, но свежее исследование показало, что бывают варианты похуже. Ученые выяснили, что еще негативнее на моральный дух и производительность труда сотрудников влияет, когда во главе команды стоит самодур, у которого вспышки агрессии непредсказуемо сменяются этичным поведением.

19 ноября
Юлия Трепалина

Ученые из Аргентины в серии экспериментов проследили за поведением домашних собак во время разногласий между членами семьи и выявили у четвероногих питомцев ряд характерных реакций на конфликт.

30 октября
Елизавета Александрова

Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.

16 ноября
Evgenia

Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.

31 октября
Татьяна

Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно