Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В НИУ ВШЭ улучшили модель диффузионной нейросети
Ученые Центра искусственного интеллекта и факультета компьютерных наук НИУ ВШЭ, а также Института искусственного интеллекта AIRI и Sber AI разработали новую структуру диффузионной модели, для которой возможно задать восемь видов распределения шума. Вместо классической структуры модели в виде цепи Маркова и применения нормального распределения ученые предложили звездообразную модель, где возможно выбирать тип распределения. Это поможет решать задачи в разных геометрических пространствах с помощью диффузионных моделей.
Результаты работы были представлены на конференции NeurIPS 2023. За последние 20 лет генеративные нейросети стали работать лучше. Если раньше они создавали не очень качественные тексты и изображения за один шаг, то с появлением диффузионных моделей — разновидности генеративных нейросетей — процесс стал постепенным, и результат улучшился.
Диффузионные нейросети основаны на вероятностной модели шумоподавления и диффузии, или DDPM. Модель работает так: на каждом этапе к данным добавляются случайные изменения. Например, с каждым шагом могут изменяться цвета или яркость. Эти изменения постепенно уменьшают шум и делают данные более похожими на нужный результат до тех пор, пока из хаоса не получится конечное изображение.
В основе модели лежит цепь Маркова, которая постепенно добавляет шум, а затем так же постепенно обращает процесс диффузии вспять, чтобы получить исходные данные, например картинку с котиком. Нейросеть учится этим преобразованиям на тренировочных данных, в которых есть пример оригинального изображения и его зашумленных версий.
Такие модели хорошо генерируют картинки, звуки, но с более сложными задачами, например генерированием объемных структур, справляются хуже. Это происходит из-за того, что шаги зашумления диффузионной модели работают только с помощью нормального распределения. И если исходные объекты имеют ограничения, их невозможно задать и сохранить на протяжении всех шагов.

Команда исследователей предложила новый тип модели, который упрощает процесс работы с данными. В новой структуре диффузионной модели стало возможным изменять тип распределения шума. Чтобы этого добиться, исследователи преобразовали структуру модели в звездообразную, где все состояния были не внутри марковской цепочки, а расходились из исходного объекта в стороны.
«Например, задача нейросети — сгенерировать молекулу. В составе молекулы есть три типа атомов, которые задаются с помощью дискретных данных. Если зашумить эти данные нормальным распределением, то типы атомов станут принимать не существующие в реальном мире значения. В звездообразной модели мы можем подобрать нужный тип распределения, при котором данные не будут искажаться», — комментирует один из авторов статьи, стажер-исследователь Центра глубинного обучения и байесовских методов Института искусственного интеллекта и цифровых наук факультета компьютерных наук НИУ ВШЭ Андрей Охотин.

В структуре модели две компоненты. Первая отвечает за зашумление объекта путем пошагового удаления информации, а вторая учится делать шаг назад в этой цепочке. Модель возможно задать для восьми видов распределений, которые поддерживают ограничения данных.
«Мы перешли к новой структуре обратного процесса. Если раньше каждое следующее состояние можно было получить, используя только одно предыдущее, то теперь каждое состояние объекта зависит от всех предыдущих, — объясняет научный руководитель Института искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ, научный консультант AIRI Дмитрий Ветров. — При такой структуре информация собирается в один объект, который мы назвали хвостовой статистикой, и подается в нейронную сеть, чтобы она сделала следующий шаг. Это позволяет эффективнее обучать модель».
Ученые сравнили эффективность звездообразной модели с классическими диффузионными моделями. На задачах генерации текста в обычном режиме модель ученых работала на таком же уровне качества. А в ускоренном режиме (при меньшем числе шагов генерации) модель для изображений работала лучше и генерировала набор данных ближе к исходному.

Со сложными задачами, связанными с генерацией точек в разных геометрических пространствах — сфере, симплексе и пространстве матриц, описывающих эллипсы, — звездообразная модель справлялась лучше, чем классическая диффузионная модель.
В задаче с генерацией точек на сфере модели нужно было научиться отмечать точки в тех местах, где, согласно геодезическому набору данных 2020 года, на поверхности Земли чаще всего происходили пожары. После этого сравнивались точки, которые были в действительности, и те, что сгенерировала модель. Модель сгенерировала точки максимально приближенно к оригиналу. Полученные результаты сопоставимы с существующими методами решения этой задачи.
«В этой статье мы предложили более универсальную диффузионную модель, которая позволяет генерировать объекты сложной структуры. Это поможет применять такие методы для более широкого класса задач из естественных наук, например из биологии, физики, химии, где есть структурные ограничения при генерации объектов: молекул, состояний элементарных частиц, химических соединений», — комментирует один из авторов статьи, младший научный сотрудник Центра глубинного обучения и байесовских методов Института искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ, научный сотрудник AIRI Айбек Аланов.
Исследование поддержано грантом для исследовательских центров в области искусственного интеллекта, предоставленным Аналитическим центром при Правительстве России.
Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.
Жизнь в городских условиях давно стала для птиц своеобразной «эволюционной лабораторией». Ученые из Шотландии показали, что сильнее всего размножение птиц ухудшает наличие незнакомых деревьев.
Растительная диета давно стала золотым стандартом для тех, кто мечтает о долгой и здоровой жизни. Но китайские ученые внесли серьезные коррективы в этот постулат. Они обнаружили, что большинство местных долгожителей, перешагнувших столетний рубеж, регулярно употребляют в пищу мясо. Особенно заметна эта связь у одной специфической группы пожилых людей, что заставляет по-новому взглянуть на диетические рекомендации для самых старших поколений.
Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.
Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.
Растительная диета давно стала золотым стандартом для тех, кто мечтает о долгой и здоровой жизни. Но китайские ученые внесли серьезные коррективы в этот постулат. Они обнаружили, что большинство местных долгожителей, перешагнувших столетний рубеж, регулярно употребляют в пищу мясо. Особенно заметна эта связь у одной специфической группы пожилых людей, что заставляет по-новому взглянуть на диетические рекомендации для самых старших поколений.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
