Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Разработка Пермского Политеха поможет контролировать вредные выбросы в атмосферу из перспективных газотурбинных установок
Газотурбинные установки используют в нефтегазовой и авиационной промышленности в качестве источника энергии. В состав установки входит газотурбинный двигатель. Один из важнейших элементов в нем — камера сгорания — основной источник вредных выбросов. Снижение выбросов в атмосферу можно обеспечить применением малоэмиссионной камеры сгорания (МЭКС). Сегодня контроль выбросов в атмосферу не ведется, поскольку нет датчиков эмиссии. Ученые Пермского Политеха предложили для контроля вредных выбросов из камеры сгорания использовать математическую модель МЭКС, встроенную в систему автоматического управления газотурбинной установки. Для повышения адаптивных свойств модели использованы технологии искусственного интеллекта, а именно — нейронные сети, которые позволяют эффективно увеличить качество моделирования процессов в сложных объектах на основе создания гибких и простых алгоритмов. Таким образом, ученые Пермского Политеха разработали и апробировали систему автоматического управления МЭКС со встроенной нейросетевой моделью.
Исследование опубликовано в цифровой библиотеке IEEE Xplore по результатам международной российской конференции «Умная индустрия». Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет 2030».
Газотурбинный двигатель управляется подачей топлива, который внутри двигателя смешивается с воздухом, сжимается и превращается в топливовоздушную смесь. Эта смесь подается в камеру сгорания, там сжигается и в виде реактивной струи газа выбрасывается в сопло двигателя, создавая тягу. Чем больше топлива в топливовоздушной смеси, тем больше вырабатываемая мощность (скорость самолета), но также увеличивается выброс (эмиссия) вредных веществ в атмосферу.
«Для того, чтобы снизить количество вредных выбросов в атмосферу, современные газотурбинные установки оснащают малоэмиссиоными камерами сгорания. В них горит обедненная топливная смесь с большим количество воздуха. За счет этого выделяется меньше оксидов азота и углерода, и работа установки становится более экологичной. Однако малоэмиссионные камеры имеют очень узкий рабочий диапазон, зависящий от концентрации топлива в смеси: при большом количестве топлива выбросов становится слишком много (что не отвечает экологическим требованиям), а при малом количестве – может произойти срыв пламени, и установка перестанет работать.
Чтобы не произошел срыв важно контролировать пульсацию давления в жаровых трубах (чем выше они по амплитуде, тем выше вероятность срыва пламени). При этом контролировать процессы в камере сгорания в современной практике невозможно поскольку «физические» датчики не устанавливаются в камеру сгорания в настоящее время», — рассказывает доцент кафедры конструирования и технологий в электротехнике ПНИПУ, кандидат технических наук Татьяна Кузнецова.
Разработанный учеными виртуальный регулятор для газотурбинных установок, построенный на основе нейросетевой математической модели камеры сгорания, прогнозирует выбросы оксидов азота и углерода в атмосферу из камеры сгорания и пульсацию давления в жаровых трубах в зависимости от расхода топлива.
«Нейросетевая модель камеры сгорания, встроенная в систему автоматического управления газотурбинной установки, выполняет роль «виртуального» сенсора. В отличие от физических датчиков он не замеряет концентрацию вредных веществ напрямую. Вместо этого виртуальный сенсор по специальным алгоритмам отслеживает расход топлива и в зависимости от его величины вычисляет уровень эмиссии вредных веществ и амплитуду пульсации давления в жаровых трубах. После этого сенсор посылает сигнал системе управления, которая в зависимости от ситуации может изменить уровень подачи топлива, чтобы не допустить излишних выбросов вредных веществ в атмосферу или срыва пламени», — объясняет ученая.
Основу разработки нейросетевой модели составляют полученные данные натурных испытаний для одного из вариантов промышленной камеры сгорания. Моделирование, обучение и тестирование нейронной сети проводилось в MATLAB Simulink. Эффективность работы регулятора эмиссии и нейросетевой модели МЭКС была проверена на имитаторе двигателя в ходе стендовых испытаний на программно-аппаратной платформе PXI N. В результате спрогнозированные данные оказались с высокой точностью соответствующими данным, полученным в ходе эксперимента.
Использование нейронных сетей в регуляторах камер сгорания позволит увеличить их адаптивность, точность и быстродействие при прогнозировании выбросов вредных веществ в атмосферу в режиме реального времени. Ученые отмечают, что в будущем нейросетевую модель можно будет использовать при создании систем управления наземными газотурбинными установками и авиационными двигателями нового поколения.
Больше трети населения мира близоруки, а еще в 2000 году эта доля была в 1,5 раза ниже. Причины массового ухудшения зрения огромного числа людей активно обсуждаются учеными. Авторы новой работы считают, что прежние подходы боролись с проблемой не с того конца.
Концепция «эмоционального интеллекта» за последние десятилетия стала одной из самых популярных в современной психологии. Сегодня она используется в диагностике, тренингах, учебных программах, кадровом отборе и других областях, где важно иметь способность понимать и регулировать эмоции. Однако при всей широте применения и востребованности этой концепции, в ее теоретическом фундаменте сохраняется системный пробел: в ней не учитывается сама способность чувствовать. Ученая Пермского Политеха предложила дополнить структуру эмоционального интеллекта новым элементом, который ранее не учитывался — способностью чувствовать и проживать свои эмоциональные переживания. Это позволит более точно диагностировать состояние человека и может продвинуть изучение вопроса имитации эмоций и чувств.
Исследователи СГМУ имени В.И. Разумовского изучили новейшие научные данные о химическом составе летучих органических соединений (ЛОС), образующихся в организме при различных заболеваниях, и выявили зависимость между специфическими запахами и определенными патологиями.
Ученые из Института космических исследований РАН и МФТИ раскрыли химический механизм, объясняющий появление молекул воды на поверхностях астероидов.
Пройдя перигелий 30 октября 2025 года — ближайшую к Солнцу точку на своей траектории, — 3I/ATLAS буквально взорвалась активностью: объект выбросил мощные потоки воды, монооксида углерода (СО), углекислого газа (СО₂) и органических молекул, превратившись в полноценную комету. Наблюдения с помощью космической обсерватории SPHEREx впервые позволили увидеть, как вещество из другой звездной системы начинает полностью испаряться под Солнцем, раскрывая свой изначальный химический состав.
Исследователи Санкт-Петербургского государственного университета разработали эффективный способ обнаружения в крови важнейшего биомаркера иммунитета — неоптерина — с помощью нанотехнологий и лазера.
Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.
Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно