Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Разработан метод нанотомографии на основе пьезоэлектрического эффекта
Исследователи из Сколтеха и их российские и испанские коллеги экспериментально подтвердили работоспособность концепции нанотомографии давления — нового метода отображения внутренней структуры наноматериалов с учетом распределения их плотности. Они показали, что разрешение нового вида томографии почти на два порядка выше, чем у используемых сегодня рентгеновской и нейтронной томографии, которые вдобавок несут радиационные риски. Авторы работы полагают, что их метод в перспективе может стать базовым метрологическим инструментом нанотехнологов.
Работа опубликована в Journal of the Mechanics and Physics of Solids. Под давлением свойства материалов меняются — на этом основаны многие технологии, давшие человечеству, например, кованый булат средневековых клинков или преднапряженный железобетон современных мостов и небоскребов. Теперь на очереди — нанотехнологии, и заранее трудно даже предсказать все возможные применения «напряженных материалов» в сверхмалых устройствах. Но чтобы начать исследовать это направление, ученым предстоит решить важную проблему.
«Чтобы воспользоваться напряженными наноматериалами, нужно знать, как именно в том или ином образце или детали распределено внутреннее напряжение и, соответственно, как меняются свойства материала в разных точках, — объясняет один из авторов исследования, профессор Сколтеха Николай Бриллиантов. — Для этого картируют внутренние неоднородности, в частности уплотнения и пустоты. В таких случаях применяется томография».
Как и в случае с компьютерной томографией в медицинской клинике, томография в широком смысле предполагает любое послойное исследование внутренней структуры объекта без его разрушения. Образец просвечивают под многими разными углами, регистрируя прошедшее насквозь излучение. Этот процесс повторяется по очереди во многих плоскостях, и получается серия двумерных «срезов» образца, которые затем можно совместить в 3D-модель при помощи весьма непростых математических методов.
При внедрении напряженных материалов в нанотехнологии можно было бы воспользоваться томографией на базе рентгена или нейтронов, но эти методы не дают картинку с высоким наноразрешением, так как сенсоры не могут улавливать такое излучение на выходе из образца с достаточной точностью. Кроме того, эти методы сопряжены с радиационным риском для персонала как во время эксплуатации оборудования, так и при нахождении в облученном помещении — из-за так называемой наведенной радиоактивности. Более того, воздействие нейтронов и рентгеновских фотонов может повредить и сам образец. Что касается просвечивающей электронной микроскопии, то она требует приготовления чрезвычайно тонких срезов, что существенно ограничивает ее применение.
«Мы устраняем все эти недостатки и открываем дорогу к новым приложениям в нанотехнологиях, подтверждая работоспособность концепции нового вида томографии, который обеспечивает почти в сто раз более высокое разрешение и не использует опасной радиации, что безопаснее и для персонала, и для образцов», — прокомментировал результаты работы Бриллиантов.
Нанотомография давления основана на явлении пьезоэлектричества: некоторые материалы, называемые пьезоэлектриками, при механической деформации порождают электрическое поле. У подкласса ферроэлектриков этот эффект преобразования механического напряжения в электричество особенно ярко выражен, и именно такой материал использовали в качестве образца для анализа учёные из Сколтеха. Однако, по их словам, метод будет работать и на твердых образцах из других материалов, если задействовать ферроэлектрик во вспомогательной роли.
Базовая концепция такова: металлическая игла многократно проходит по поверхности ферроэлектрического образца в разных направлениях и с разной степенью нажима, считывая возникающее под давлением электрическое поле. Поскольку характеристики поля связаны с локальной плотностью материала в той или иной точке, из полученных данных можно извлечь внутреннюю структуру образца и распределение давления в нем.
Определение трехмерной структуры образца по данным томографии — математически сложный процесс, который называется решением обратной задачи. «В нашей работе обратная задача применительно к пьезоэлектрику решена впервые, — сказал соавтор исследования, научный сотрудник Сколтеха Глеб Рыжаков.
— Для этого мы, во-первых, создали физическую модель, которая объясняет, что происходит, когда металлическая игла скользит по поверхности образца. Во-вторых, мы разработали математические методы для решения обратной задачи. И, наконец, был разработан комплекс компьютерных программ для преобразования записанных электрических сигналов в итоговый томографический 3D-снимок».
По словам ученых, один из вариантов развития метода в будущем — сделать, чтобы он работал не только на пьезоэлектриках, но и на других твердых образцах. «Вопрос упирается в техническую реализацию: если изготовить достаточно тонкую и прочную пластину из пьезоэлектрика, то ее можно будет проложить между иглой томографа и изучаемым образцом. Тогда в теории все должно работать с произвольными материалами при условии, что измерения электрического поля будут очень точными», — добавил Рыжаков.
«Мы рассчитываем, что в будущем нанотомография давления прочно войдет в нанотехнологический инструментарий и сыграет роль в появлении новых приложений», — подытожил Бриллиантов.
В 1892 году американский астроном Эдвард Эмерсон Барнард увидел рядом с Венерой яркую звезду. Позже светило словно растворилась в небе, породив множество гипотез. Загадка «исчезнувшей звезды» более века волновала астрономов, пока группа американских исследователей, наконец, ее не разгадала.
В конце 2025 года СМИ рассказали нам, что «новая» российская орбитальная станция (РОС) будет состоять из модулей, летающих в космосе до 30 лет. «И так сойдет!»: новую российскую орбитальную станцию соберут из остатков МКС», «Отцепим старье от МКС и будем бесконечно чинить» — это не издание «Панорама», а абсолютно реальные заголовки российских СМИ. Печально, но сходную позицию занял и лучший космический журналист и расследователь современного мира Эрик Бергер. Он зашел настолько далеко, чтобы пожалеть, что Дмитрий Рогозин уже не возглавляет «Роскосмос». А вот у тех, кто знает тему, решения по РОС, заявленные официальными лицами в конце прошлого года, вызвали положительную реакцию. Почему?
Три из четырех крупнейших спутников Юпитера известны «согласованностью» своего обращения вокруг Юпитера: пока Ганимед совершает полный оборот, Европа описывает два круга, а Ио — четыре. Только Каллисто нарушает гармонию и движется «по-своему», и недавно этому предложили новое объяснение: возможно, так сложилось из-за неоднородности того газопылевого облака, в котором эти луны формировались.
В конце 2025 года СМИ рассказали нам, что «новая» российская орбитальная станция (РОС) будет состоять из модулей, летающих в космосе до 30 лет. «И так сойдет!»: новую российскую орбитальную станцию соберут из остатков МКС», «Отцепим старье от МКС и будем бесконечно чинить» — это не издание «Панорама», а абсолютно реальные заголовки российских СМИ. Печально, но сходную позицию занял и лучший космический журналист и расследователь современного мира Эрик Бергер. Он зашел настолько далеко, чтобы пожалеть, что Дмитрий Рогозин уже не возглавляет «Роскосмос». А вот у тех, кто знает тему, решения по РОС, заявленные официальными лицами в конце прошлого года, вызвали положительную реакцию. Почему?
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
В 1892 году американский астроном Эдвард Эмерсон Барнард увидел рядом с Венерой яркую звезду. Позже светило словно растворилась в небе, породив множество гипотез. Загадка «исчезнувшей звезды» более века волновала астрономов, пока группа американских исследователей, наконец, ее не разгадала.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
У побережья Канады морские биологи стали свидетелями необычного случая. Косатки и дельфины объединили свои силы, чтобы вместе охотиться на тихоокеанского лосося. Они погружались в темные глубины, а после удачной охоты делились пищей. Это первое задокументированное охотничье сотрудничество между двумя видами морских млекопитающих.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
