12.08.2021
ФизТех
1 376

Раскрыта структура рецептора, вовлеченного в диабет второго типа

4.5

Исследователи из Университета Южной Калифорнии, американской компании «Мерк», Сколтеха, МФТИ, Калифорнийского университета в Лос-Анджелесе и Шербрукского университета определили структуру человеческого рецептора BLT 1, который играет роль в воспалительных, инфекционных, аллергических и онкологических заболеваниях. Анализ прояснил, как рецептор распознает партнеров по связыванию и взаимодействует с ними. Это открывает возможности для разработки более эффективных лекарств от диабета второго типа и других болезней, воздействующих на рецептор BLT 1.

Структура и сайт связывания рецептора лейкотриена hBLT1/ ©Michaelian, N., et al. Nature Communications

Работа опубликована в журнале Nature Communications. Рецепторы — белковые «устройства», при помощи которых клетки принимают и передают сигналы. Переносящая сигнал молекула (лиганд-агонист) связывается с рецептором, он меняет свою форму и тем самым передает сигнал дальше, например вовнутрь клетки, на которой расположен, вызывая те или иные физиологические последствия.

Противоположная по своей роли молекула, лиганд-антагонист, присоединяясь к тому же рецептору, мешает пристыковке агонистов. И те, и другие соединения используются как лекарства, а в самом организме представлены в числе прочего гормонами. Человеческий рецептор лейкотриена B4 1-го типа (hBLT1) регулирует воспалительные процессы, такие как набор T-лимфоцитов, а также пролиферацию и миграцию гладкомышечных клеток. Установлена связь рецептора с рядом болезней, в том числе астмой, гриппом, артритом, атеросклерозом, диабетом и раком.

С тех пор как hBLT1 открыли в 1997 году, предпринимались попытки подобрать пригодные в качестве лекарств лиганды к этому рецептору, однако у них наблюдались существенные побочные эффекты, низкая эффективность и сравнительно долгое время выведения из организма. Эти недостатки, вероятно, объясняются низкой специфичностью известных лигандов: они не только связываются с hBLT1, но и участвуют в других взаимодействиях — нежелательных. Понимание структуры рецептора и механизма связывания с ним лигандов поможет разработке более совершенных селективных лекарств.

Недавно опубликованная работа коллектива авторов из России, США и Канады прояснила структуру и механизм работы hBLT1. Вадим Черезов, заведующий лабораторией структурной биологии рецепторов, сопряженных с G-белком, МФТИ и лабораторией Университета Южной Калифорнии, прокомментировал: «Мы определили кристаллическую структуру с разрешением 2,9 ангстрем рецептора в комплексе с селективным антагонистом MK-D-046, разработанным Merck & Co. Эта структура должна помочь рациональному дизайну более совершенных препаратов для лечения диабета второго типа и других заболеваний воспалительной природы».

В работе определение структуры комплекса рецептора и лиганда дополняется за счет экспериментального метода, известного как сайт-специфический мутагенез, а также метода молекулярного докинга, который моделирует присоединение MK-D-046 к hBLT1. По словам старшего преподавателя Сколтеха Петра Попова, таким образом были установлены основные факторы, определяющие межмолекулярное взаимодействие рецептора с его лигандами.

Из результатов анализа структуры hBLT1 стало ясно, как рецептор распознает лиганды и связывается с ними. В частности, ученые указывают на вероятное существование в мембране рецептора канала, через который осуществляется доступ лиганда. Работа также указывает на возможные механизмы связывания эндогенных агонистов, то есть тех веществ, которые производятся самим организмом для активации рецептора. Сделанные исследователями выводы о строении и работе рецептора hBLT1 открывают возможности для структурно-ориентированного дизайна лекарств.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Предстоящие мероприятия
Вчера, 19:27
Михаил Орлов

В последнее время Азовское море страдает от нашествий медуз-корнеротов. Местные исследователи из Азово-Черноморского филиала ВНИРО подошли к проблеме изобретательно и предложили использовать корнеротов как ценный продукт питания.

Позавчера, 16:42
Илья Ведмеденко

Украина, вероятно, потеряла недавно запущенный космический аппарат «Сич-2-30». Пока с ним нет устойчивой связи — или совсем никакой.

25 января
Александр Березин

Океаны на нашей планете не могли возникнуть сразу после ее появления: здесь было слишком жарко. Однако попытки объяснить их «кометным завозом» не удались, изотопный состав нашей воды не такой, как в кометах. До самых недавних пор оставалось неясным, откуда же тогда она появилась, сделав возможной земную жизнь?

24 января
Сколтех

Коллектив ученых из Сколтеха — аспирант Егор Нужин, доцент Максим Панов и профессор Николай Бриллиантов — при помощи методов искусственного интеллекта объяснили таинственное поведение, характерное для ряда животных, — кружение.

21 января
Илья Ведмеденко

Заслуженные штурмовики A-10 и Су-25, которым дали прозвища «Бородавочник » и «Грач» соответственно, много десятилетий стоят на службе в Соединенных Штатах и России. Страны избрали разные подходы к модернизации этих самолетов, и сегодня Naked Science постарается понять, какой из них больше соответствует требованиям XXI века.

23 января
Илья Ведмеденко

(16) Психея – одно из самых необычных небесных тел в Поясе астероидов. Она может дать людям не только понимание о происхождении планет, но и невероятные по своим объемам ресурсы. Правда, придется подождать: миссия по исследованию астероида находится лишь в самом начале долгого и сложного пути.

12 января
Алиса Гаджиева

Дополнительное исследование вулканических пород формации Кибиш в Эфиопии изменило датировку найденных там костей Homo sapiens.

20 января
ТГУ

Ученые факультета физической культуры Томского государственного университета в рамках гранта, поддержанного РНФ, исследуют особенности механизма усвоения глюкозы при сахарном диабете второго типа. Для этого был организован масштабный четырехмесячный эксперимент на 240 мышах, подобного которому в мире еще никто не проводил. Животные с искусственно сформированным диабетом подвергались физической нагрузке. Установлено, что вечерние тренировки лучше снижали вес мышей мышей, а утренние – приводили к уменьшению уровня глюкозы. Предположительно, фактором, стимулирующим утилизацию глюкозы, выступил стресс. Ученые намерены проверить эту гипотезу.

24 января
Сколтех

Коллектив ученых из Сколтеха — аспирант Егор Нужин, доцент Максим Панов и профессор Николай Бриллиантов — при помощи методов искусственного интеллекта объяснили таинственное поведение, характерное для ряда животных, — кружение.

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: