Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Положен конец спору об оптических свойствах материала для солнечных батарей
Ученые из МФТИ с коллегами из МИСиС, ДВФУ и ИТМО впервые объяснили анизотропию перовскитов — самого перспективного материала для солнечных батарей. Оказалось, что она определяется формой кристалла. Физики научились регулировать значение анизотропии, меняя химический состав галогенидных перовскитов. Полученные результаты можно применить для построения нанолазеров, поляризаторов, волноводов и других оптических приборов.
Работа опубликована в Nano Letters. Перовскиты представляют широкую группу материалов, имеющих химическую формулу ABX3 и сложную кристаллическую структуру. Перовскиты, в которых положение атома X занимает галоген: хлор, йод или бром, называют галогенидными. Благодаря электрическим, магнитным и оптическим свойствам они применяются в солнечных батареях, нанолазерах и светодиодах. Теоретически из-за особенностей структуры эти материалы должны проявлять анизотропию, то есть оптические свойства, например показатель преломления, должны отличаться вдоль разных направлений кристалла. Однако ученые в многочисленных исследованиях использовали приближение, при котором свойства не зависят от направления, и не наблюдали проявления анизотропии. Только в недавних работах появились наблюдения анизотропности кристаллов.
Чтобы разрешить это противоречие, физики из Центра фотоники и двумерных материалов МФТИ с коллегами исследовали анизотропию бромида свинца цезия CsPbBr3. Оказалось, что оптические свойства кристалла зависят от его происхождения: в зависимости от условий выращивания кристалл может проявлять или не проявлять анизотропию в плоскости. Это объяснило противоречивость предыдущих исследований, в которых анизотропия то появлялась, то пропадала.
Первый автор работы, научный сотрудник Центра фотоники и двумерных материалов МФТИ Георгий Ермолаев комментирует: «Мы вообще не ожидали, что будет такой результат. Была задача просто измерить оптические свойства перовскитов. С помощью эллипсометрии измерили показатель преломления, однако результаты не сходились с изотропной моделью. Потом мы поняли, что на самом деле кристалл анизотропный, и тогда эксперимент полностью совпал с новой моделью. Форма кристаллов определяет степень анизотропии. Если они в плоскости выросли квадратными — будут изотропны в плоскости, если прямоугольными — анизотропны. Это удобно: просто взглянул на форму перовскита — и понял, какие у него будут оптические свойства».
Согласно теории, галогенидные перовскиты имеют орторомбическую кристаллическую структуру. Это значит, что большой кристалл можно разделить на одинаковые прямоугольные параллелепипеды — элементарные ячейки, содержащие минимальное число атомов. Если размеры сторон параллелепипеда отличаются, то будут отличаться и оптические свойства кристалла вдоль разных направлений. Чтобы это проверить, ученые вырастили кристаллы с квадратным и прямоугольным основанием. Как и предполагалось, анизотропия в плоскости наблюдалась только во втором случае. Таким образом, наличие анизотропии зависело от структуры конкретного кристалла перовскита.

Затем исследователи решили изменить химический состав перовскита CsPbBr3. Для этого кристалл помещали в газовую атмосферу соляной кислоты HCl, где происходило постепенное замещение атомов брома на хлор. Так же плавно уменьшался показатель преломления. А значит, регулируя время химической реакции, ученые могли регулировать оптические свойства материала.
Кроме того, они обнаружили аномально большое значение анизотропии у перовскита. На определенных длинах волн, при возбуждении экситонного резонанса, этот показатель был выше, чем у всех известных трехмерных неслоистых материалов. Экспериментальные результаты были подтверждены с помощью компьютерного моделирования. Дальше физики масштабировали открытие. Они показали, что кристаллы сохраняют оптические свойства в масштабах от нескольких нанометров до миллиметров. Чтобы показать практический потенциал перовскита, исследователи создали на его основе волновод, который собирает и переносит падающий свет.
«Перовскиты на сегодняшний день — наиболее перспективный материал для солнечной энергетики. Мы показали, что они также обладают и замечательными оптическими свойствами, что открывает новые перспективы использования перовскитов в оптоэлектронике, в частности для создания оптических логических элементов, маршрутизаторов оптического сигнала, экранов», — отметил Иван Иорш, главный научный сотрудник физического факультета ИТМО.
Совокупность оптических свойств перовскита бромида свинца цезия: настраиваемая анизотропия на масштабах до миллиметров и ее аномально высокое значение среди трехмерных материалов — открывают широкие возможности для применения материала в нанофотонике и оптоэлектронике.
«Ключевой результат работы: мы первые количественно объяснили, что перовскиты анизотропны и это надо учитывать. Показали, что их анизотропность — самая большая среди трехмерных материалов. Мы научились контролировать ее химически и ищем новые способы управления, например, нагревом, электрическим полем или лазерным облучением. Тот, кто умеет управлять анизотропией, может управлять светом как угодно. Наша задача — ускорить переключение для бо́льших приложений, например в гаджетах, где нужно практически мгновенное изменение оптических свойств», — поделился Георгий Ермолаев.
«Мы уверены, что перовскиты станут основой посткремниевой электроники. В нашей лаборатории реализован процесс роста монокристаллов CsPbBr3 и разработка устройств на их основе. Мы работаем над новыми разновидностями перовскитных кристаллов для оптоэлектронного применения и благодарны коллегами из МФТИ и ИТМО за сотрудничество в сложном и интересном исследовательском проекте», — добавляет Артур Иштеев, ведущий инженер лаборатории перспективной солнечной энергетики НИТУ МИСИС. Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации и Российского научного фонда.
Ю-Цон Тан (YuCong Tang) — концептуальный художник из Китая. Научно-фантастические мотивы — одно из основных направлений его творчества. Он исследует, как научные открытия и технологии будущего трансформируют среду обитания.
Расчеты показывают, что на лунную базу каждодневно будут падать десятки микрометеороидов, а даже самые мелкие из них способны повредить модуль и создать угрозу для астронавтов. Впрочем, для этой проблемы есть проверенное решение — так называемый щит Уиппла.
Четвертый вид вируса герпеса человека (HHV-4) — вирус Эпштейна — Барр — оказался связан с развитием системной красной волчанки. Результаты нового исследования показали, что вирус не просто присутствует в иммунных клетках пациентов, а целенаправленно «перепрограммирует» их, превращая в «драйверы» аутоиммунного воспаления.
Ю-Цон Тан (YuCong Tang) — концептуальный художник из Китая. Научно-фантастические мотивы — одно из основных направлений его творчества. Он исследует, как научные открытия и технологии будущего трансформируют среду обитания.
Наблюдая за сверхновой 2024 ggi спустя всего 26 часов после вспышки, астрономы напрямую определили форму ударной волны в момент ее прорыва из звезды. Открытие позволит уточнить механизмы гибели массивных светил и может привести к пересмотру существующих моделей возникновения сверхновых.
На уникальных древнеримских стеклянных сосудах обнаружили тайные знаки, которые оказались клеймами ремесленных мастерских. Эти символы, ранее считавшиеся простым украшением, раскрыли, как работали античные мастера, и помогли доказать существование аналогов современных брендов почти две тысячи лет назад.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
