• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
20.07.2022
НИУ ВШЭ
626

Открыты новые возможности солнечных перовскитных элементов

4.6

Команда ученых из МИЭМ ВШЭ, Физического института имени П.Н. Лебедева РАН и Университета Южной Калифорнии с помощью технологий машинного обучения нашла способ избежать внутренних дефектов и увеличить эффективность перовскитных солнечных элементов. Результаты исследования могут применяться для разработки более эффективных и долговечных материалов.

Открыты новые возможности солнечных перовскитных элементов / ©Getty images / Автор: Sycophanta Duccius

Исследование проводилось на двойном перовските Cs2AgBiBr6. Статья опубликована в журнале Journal of Physical Chemistry Letters. Альтернативная энергетика привлекает внимание ученых и инвесторов из-за ее возобновляемости и чистоты. Одним из открытий индустрии в последние 20 лет стали органическо-неорганические перовскиты. Перовскит — это минерал с определенной кристаллической структурой.

Впервые такой тип соединений был обнаружен в 1839 году в Уральских горах и назван в честь графа Льва Перовского. С тех пор как в 2009 году разработали первый галоген-перовскитный солнечный элемент, показатели КПД (коэффициента полезного действия) выросли с 3,8 до 25 процентов в 2021 году. Сейчас перовскиты стали сравнимы с их главными конкурентами — солнечными элементами на основе кремния.

Пленки из перовскитов можно получить осаждением из раствора, это простая и дешевая технология. В этом их преимущество перед кремниевыми батареями и электронными устройствами со сложным процессом осаждения на подложку, где нужны сверхчистый кремний и вакуумные камеры. Существенный минус перовскитов в том, что они склонны к деградации под действием влаги и кислорода воздуха, высокой температуры и интенсивного облучения светом. Поэтому, несмотря на свои достоинства, соединения нестабильны и работать с ними сложно.

Другой проблемой перовскитов стала токсичность свинца, который использовали для увеличения их эффективности. Показатели свинцовых батарей стали немного выше, но с их использованием появились новые трудности. Содержащие свинец фотоэлементы необходимо грамотно утилизировать, иначе можно нанести вред экологии. При этом расходы на утилизацию могут быть больше, чем прибыль от самих устройств. Это экономически невыгодно, поэтому производство свинцовых батарей так и не вышло на промышленный уровень.

Перед учеными возникла задача: найти нетоксичное и стабильное соединение, не содержащее ядовитый свинец и химически неустойчивую органическую компоненту, а также способное обеспечить высокий КПД устройства. Такую работу провела группа исследователей из России и США. Для создания новых солнечных перовскитных элементов был выбран материал Cs2AgBiBr6 и изучены его свойства.

Соединение имеет структуру двойного перовскита с химической формулой A2BB’X6, где А — большой катион (положительно заряженный ион), В, B’ — катионы меньшего размера, чем А, а Х — анион (отрицательно заряженный ион). В данном соединении сайты B, B’ заняты катионами Ag и Bi. Такое соединение устойчивее: риск того, что неорганические ионы Cs, Ag и Bi будут реагировать с окружающей средой, довольно мал. Ученые исследовали нетоксичное и стабильное соединение, Cs2AgBiBr6, эффективность которого, однако, была менее трех процентов из-за дефектов в пленках.
Дефекты провоцируют захват фотогенерированных зарядов и ускоряют процесс их рекомбинации: положительно и отрицательно заряженные частицы начинают сталкиваться чаще, нейтрализуют друг друга, и заряды исчезают. Это приводит к потерям энергии: вместо того чтобы генерировать электрический ток, она рассеивается в виде тепла.

Чтобы понять, как снизить возможность образования дефектов, ученые анализировали механизм образования центров рекомбинации отрицательно заряженными вакансиями Br. Вакансиями брома называют отсутствие атомов Br в решетке Cs2AgBiBr6. Такие дефекты встречаются чаще всего. Нейтральные вакансии не сильно влияют на исчезновение зарядов. Но как только эти дефекты принимают электроны и становятся отрицательно заряженными, возникают ловушки.

Большой объем данных о дефектах (десятки тысяч конфигураций) генерировался с помощью компьютерного моделирования. Исследователи использовали квантовую теорию функционала плотности. Большое количество полученных данных затрудняло анализ результатов. Чтобы решить эту проблему, применялись современные методы машинного обучения и анализа результатов. Это помогло определить, движения каких атомов приводят к созданию ловушек и исчезновению зарядов, что снижает эффективность солнечных элементов. Ученые предложили химические способы избегать формирования таких дефектов при изготовлении материалов.

«Машинное обучение позволило нам выявить наиболее важные параметры, которые управляют захватом и исчезновением (рекомбинацией) зарядов, — комментирует профессор департамента электронной инженерии МИЭМ НИУ ВШЭ, заместитель заведующего лабораторией квантовой наноэлектроники Андрей Васенко. — Результаты нашей работы могут использоваться для создания рекомендаций по устранению дефектов и разработке лучших материалов для перовскитных солнечных элементов».

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Национальный исследовательский университет «Высшая школа экономики» — один из крупнейших и самых востребованных вузов России. В университете учится 54 тысячи студентов и работает почти 4,5 тысячи учёных и преподавателей. НИУ ВШЭ ведёт фундаментальные и прикладные исследования в области социально-экономических, гуманитарных, юридических, инженерных, компьютерных, физико-математических наук, а также креативных индустрий. В университете действуют 47 центров превосходства, или международных лабораторий. Вышка объединяет ведущих мировых исследователей в области изучения мозга, нейротехнологий, биоинформатики и искусственного интеллекта. Университет входит в первую группу программы «Приоритет-2030» в направлении «Исследовательское лидерство». Кампусы НИУ ВШЭ расположены в четырех городах — Москве, Санкт-Петербурге, Нижнем Новгороде и Перми, а также в цифровом пространстве — «Вышка Онлайн».
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
13 июля
Татьяна

Все клеточные организмы ученые ведут от гипотетического предка — LUCA. Существует масса предположений и расчетов о том, как он был устроен, где и когда возник. В новой работе исследователи из Великобритании попытались ответить на эти вопросы.

7 часов назад
Александр Березин

Авторы нового исследования впервые показали, что круглые провалы в лунной поверхности не просто близки к многокилометровым пещерам на естественном спутнике Земли, но и располагают тоннелями, ведущими в глубину.

Позавчера, 16:00
Полина Меньшова

Хотя на предпочтения в литературе влияют образование, круг общения и множество других факторов, частично они могут передаваться по наследству. Ученые из Дании провели исследование и выяснили, какая доля различий в литературных вкусах может зависеть от генетических особенностей.

12 июля
Александр Березин

Falcon 9 Block 5 впервые за три сотни запусков дал частично неудачный полет. Ракета выводила 20 спутников компании SpaceX, с 15 связь уже пропала, еще пять могут быть потеряны в ближайшее время.

13 июля
Татьяна

Все клеточные организмы ученые ведут от гипотетического предка — LUCA. Существует масса предположений и расчетов о том, как он был устроен, где и когда возник. В новой работе исследователи из Великобритании попытались ответить на эти вопросы.

12 июля
Татьяна

Американские астронавты давно жалуются на систему ассенизации в скафандрах, которая представляет собой просто большой подгузник. Хватает его максимум на восемь часов, есть риск развития опрелостей и инфекций. К тому же в костюме мало запасов питьевой воды. Чтобы решить эти проблемы, ученые предложили более эффективный способ утилизации продуктов метаболизма.

25 июня
Игорь Байдов

Ученые из Китая и Бельгии воссоздали в лаборатории условия, существовавшие на Меркурии четыре миллиарда лет назад, и выяснили, что они были идеальными для образования слоя алмазов, который с течением времени становился лишь толще.

21 июня
Nadya

Земля начала формироваться примерно 4,5 миллиарда лет назад. Чтобы понять, как это происходило в ранние периоды развития нашей планеты, ученые ищут образцы древних горных пород. Одну из таких, возрастом почти 3,5 миллиарда лет, обнаружили рядом с городом Колли в Австралии.

1 июля
Александр Березин

Необычный биологический вид, по оценке авторов новой научной работы, пригоден для заселения четвертой планеты без каких-либо предварительных условий — уже в том виде, в котором он существует сейчас. Поскольку речь идет о фотосинтетическом организме, он способен нарабатывать существенное количество кислорода. Интересно, что кандидат на терраформирование Марса сохранил жизнеспособность после месяца в жидком азоте.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно