• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
20.07.2022, 12:00
НИУ ВШЭ
700

Открыты новые возможности солнечных перовскитных элементов

❋ 4.6

Команда ученых из МИЭМ ВШЭ, Физического института имени П.Н. Лебедева РАН и Университета Южной Калифорнии с помощью технологий машинного обучения нашла способ избежать внутренних дефектов и увеличить эффективность перовскитных солнечных элементов. Результаты исследования могут применяться для разработки более эффективных и долговечных материалов.

Открыты новые возможности солнечных перовскитных элементов / ©Getty images / Автор: Sycophanta Duccius

Исследование проводилось на двойном перовските Cs2AgBiBr6. Статья опубликована в журнале Journal of Physical Chemistry Letters. Альтернативная энергетика привлекает внимание ученых и инвесторов из-за ее возобновляемости и чистоты. Одним из открытий индустрии в последние 20 лет стали органическо-неорганические перовскиты. Перовскит — это минерал с определенной кристаллической структурой.

Впервые такой тип соединений был обнаружен в 1839 году в Уральских горах и назван в честь графа Льва Перовского. С тех пор как в 2009 году разработали первый галоген-перовскитный солнечный элемент, показатели КПД (коэффициента полезного действия) выросли с 3,8 до 25 процентов в 2021 году. Сейчас перовскиты стали сравнимы с их главными конкурентами — солнечными элементами на основе кремния.

Пленки из перовскитов можно получить осаждением из раствора, это простая и дешевая технология. В этом их преимущество перед кремниевыми батареями и электронными устройствами со сложным процессом осаждения на подложку, где нужны сверхчистый кремний и вакуумные камеры. Существенный минус перовскитов в том, что они склонны к деградации под действием влаги и кислорода воздуха, высокой температуры и интенсивного облучения светом. Поэтому, несмотря на свои достоинства, соединения нестабильны и работать с ними сложно.

Другой проблемой перовскитов стала токсичность свинца, который использовали для увеличения их эффективности. Показатели свинцовых батарей стали немного выше, но с их использованием появились новые трудности. Содержащие свинец фотоэлементы необходимо грамотно утилизировать, иначе можно нанести вред экологии. При этом расходы на утилизацию могут быть больше, чем прибыль от самих устройств. Это экономически невыгодно, поэтому производство свинцовых батарей так и не вышло на промышленный уровень.

Перед учеными возникла задача: найти нетоксичное и стабильное соединение, не содержащее ядовитый свинец и химически неустойчивую органическую компоненту, а также способное обеспечить высокий КПД устройства. Такую работу провела группа исследователей из России и США. Для создания новых солнечных перовскитных элементов был выбран материал Cs2AgBiBr6 и изучены его свойства.

Соединение имеет структуру двойного перовскита с химической формулой A2BB’X6, где А — большой катион (положительно заряженный ион), В, B’ — катионы меньшего размера, чем А, а Х — анион (отрицательно заряженный ион). В данном соединении сайты B, B’ заняты катионами Ag и Bi. Такое соединение устойчивее: риск того, что неорганические ионы Cs, Ag и Bi будут реагировать с окружающей средой, довольно мал. Ученые исследовали нетоксичное и стабильное соединение, Cs2AgBiBr6, эффективность которого, однако, была менее трех процентов из-за дефектов в пленках.
Дефекты провоцируют захват фотогенерированных зарядов и ускоряют процесс их рекомбинации: положительно и отрицательно заряженные частицы начинают сталкиваться чаще, нейтрализуют друг друга, и заряды исчезают. Это приводит к потерям энергии: вместо того чтобы генерировать электрический ток, она рассеивается в виде тепла.

Чтобы понять, как снизить возможность образования дефектов, ученые анализировали механизм образования центров рекомбинации отрицательно заряженными вакансиями Br. Вакансиями брома называют отсутствие атомов Br в решетке Cs2AgBiBr6. Такие дефекты встречаются чаще всего. Нейтральные вакансии не сильно влияют на исчезновение зарядов. Но как только эти дефекты принимают электроны и становятся отрицательно заряженными, возникают ловушки.

Большой объем данных о дефектах (десятки тысяч конфигураций) генерировался с помощью компьютерного моделирования. Исследователи использовали квантовую теорию функционала плотности. Большое количество полученных данных затрудняло анализ результатов. Чтобы решить эту проблему, применялись современные методы машинного обучения и анализа результатов. Это помогло определить, движения каких атомов приводят к созданию ловушек и исчезновению зарядов, что снижает эффективность солнечных элементов. Ученые предложили химические способы избегать формирования таких дефектов при изготовлении материалов.

«Машинное обучение позволило нам выявить наиболее важные параметры, которые управляют захватом и исчезновением (рекомбинацией) зарядов, — комментирует профессор департамента электронной инженерии МИЭМ НИУ ВШЭ, заместитель заведующего лабораторией квантовой наноэлектроники Андрей Васенко. — Результаты нашей работы могут использоваться для создания рекомендаций по устранению дефектов и разработке лучших материалов для перовскитных солнечных элементов».

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Национальный исследовательский университет «Высшая школа экономики» — один из крупнейших и самых востребованных вузов России. В университете учится 54 тысячи студентов и работает почти 4,5 тысячи учёных и преподавателей. НИУ ВШЭ ведёт фундаментальные и прикладные исследования в области социально-экономических, гуманитарных, юридических, инженерных, компьютерных, физико-математических наук, а также креативных индустрий. В университете действуют 47 центров превосходства, или международных лабораторий. Вышка объединяет ведущих мировых исследователей в области изучения мозга, нейротехнологий, биоинформатики и искусственного интеллекта. Университет входит в первую группу программы «Приоритет-2030» в направлении «Исследовательское лидерство». Кампусы НИУ ВШЭ расположены в четырех городах — Москве, Санкт-Петербурге, Нижнем Новгороде и Перми, а также в цифровом пространстве — «Вышка Онлайн».
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
27 ноября, 11:05
Игорь Байдов

Долгое время ученые полагали, что сотни гигантских статуй на острове Пасхи создали представители местной общины под руководством одного вождя. Однако авторы нового исследования поставили эту гипотезу под сомнение. Детальная трехмерная карта главного каменного карьера острова указала на более сложную картину. Вероятно, монументы были плодом творчества и соперничества небольших независимых групп.

26 ноября, 12:39
Игорь Байдов

Что стало настоящим фундаментом власти — умение обрабатывать землю или контроль над некоторыми культурными растениями? Авторы нового исследования пришли к выводу, что появление первых крупных сообществ и государств зависело не от земледелия в целом, а от выращивания определенных злаков. Эти культуры было легко хранить и, еще важнее, невероятно просто облагать налогом, что и дало толчок появлению цивилизации.

26 ноября, 13:12
Александр Березин

Гамма-излучение, зафиксированное гамма-телескопом «Ферми», по мнению исследователя, может объясняться только распадом вимпов, частиц темной материи, в существовании которых множество других физиков уже разуверились. Если независимые проверки подтвердят открытие, это может существенно изменить космологическую картину мира.

21 ноября, 10:02
ПНИПУ

Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.

26 ноября, 16:18
ФизТех

Коллектив российских ученых из МИРЭА — Российского технологического университета, Центра фотоники двумерных материалов МФТИ, Института металлургии и материаловедения им. А. А. Байкова РАН и ряда других ведущих научных центров провел глубокое исследование кристаллической структуры широко используемых пьезоэлектрических материалов на основе цирконата-титаната свинца. Используя метод рентгеноструктурного анализа, исследователи впервые смогли в деталях установить, как небольшие химические добавки кардинально меняют фазовый состав керамики и напрямую определяют ее электрофизические характеристики. Это открывает путь к целенаправленному дизайну «умных» материалов с заранее заданными свойствами для передовой электроники и сенсорики.

26 ноября, 17:00
Курчатовский институт

Фосфор – элемент, играющий ключевую роль в росте растений. В сельском хозяйстве он используется в составе многих минеральных удобрений. В то же время фосфор, содержащийся в сточных водах — серьезный загрязнитель, который при попадании в водоемы нарушает баланс экосистем и вызывает цветение водорослей. Ученые Национального исследовательского центра «Курчатовский институт» и Южного федерального университета предложили новый экологичный способ выделения фосфора из сточных вод с помощью фотосинтезирующих микроорганизмов.

20 ноября, 13:12
Полина Меньшова

Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.

8 ноября, 18:29
Адель Романова

По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.

12 ноября, 10:47
Максим Абдулаев

Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно