Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Обучение с подкреплением позволило лучше работать генеративным потоковым нейросетям
Ученые Центра ИИ и Института искусственного интеллекта и цифровых наук факультета компьютерных наук НИУ ВШЭ применили классические алгоритмы обучения с подкреплением для настройки генеративных потоковых сетей (GFlowNets). Это позволило улучшить работу GFlowNets, которые применяются уже три года для решения сложнейших научных задач на этапах моделирования, генерации гипотез и экспериментального проектирования.
Результаты работы вошли в пять процентов лучших публикаций на Международной конференции по искусственному интеллекту и статистике AISTATS, которая состоялась 2–4 мая 2024 года в Валенсии.
Генеративные потоковые сети (GFlowNets) — это метод в машинном обучении, который помогает создавать разнообразные и качественные образцы данных благодаря тому, что настраивает модель генерировать вариативные объекты с высокими наградами. Их начали внедрять в 2021 году, и с тех пор они применяются в различных областях: в обучении языковых моделей, в комбинаторной оптимизации (например, составлении сложных расписаний), дизайне печатных плат, моделировании молекул лекарств с заданными свойствами и прочее.
«Устройство GFlowNets можно описать на примере конструктора лего: по недостроенному объекту и набору доступных деталей модель будет пытаться предсказать, в какое место и с какой вероятностью нужно добавить деталь, чтобы по итогу мы могли с большой вероятностью собрать хороший макет машины или корабля», — объясняет Никита Морозов, стажер-исследователь Центра глубинного обучения и байесовских методов Института искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ.
Обучение с подкреплением (Reinforcement Learning, RL) — одна из парадигм машинного обучения, в которой агент обучается взаимодействовать со средой с целью максимизации функции награды. Классическая модель, построенная на основе обучения с подкреплением, AlphaGo, — первая в мире программа, победившая в настольную игру го профессионального игрока.
Генеративные потоковые сети и обучение с подкреплением схожи тем, что в качестве обучающего сигнала получают функцию награды. Однако GFlowNets пытается не максимизировать награду, а обучиться генерировать объекты с вероятностями, пропорциональными награде.
Ученые Центра ИИ и Института искусственного интеллекта и цифровых наук факультета компьютерных наук НИУ ВШЭ впервые показали, что задача обучения генеративных потоковых сетей максимально схожа с общей задачей обучения с подкреплением, а также применили специализированные методы обучения с подкреплением для генерации дискретных объектов, например молекулярных графов.
Алексей Наумов, научный руководитель Центра ИИ, директор по фундаментальным исследованиям Института искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ : «Мы показали, что классические алгоритмы обучения с подкреплением применительно к GFlowNets работают сравнимо и даже эффективнее известных современных подходов, разработанных специально для обучения этих моделей. Так, в рамках задачи моделирования молекул лекарств с заданными свойствами за время обучения нашего метода было сгенерировано на 30 процентов больше высококачественных молекул, чем у существующих методов».
Исследователи подчеркивают, что использование существующих методов обучения с подкреплением для обучения GFlowNet напрямую, без дополнительной адаптации этих методов, позволит ускорить прогресс развития новых методов в медицинской химии, материаловедении, энергетике, биотехнологиях и во многих других областях, где GFlowNet нашли применение за три года существования. Исследование поддержано грантом для исследовательских центров в области искусственного интеллекта, предоставленным Аналитическим центром при Правительстве России.
Астрономы подсчитали, что с поверхности летящего по Солнечной системе межзвездного объекта 3I/ATLAS каждую секунду испаряется около 40 килограммов водяного льда. Такую сильную кометную активность он проявил, будучи в три с половиной раза дальше Земли от Солнца. По мнению ученых, это довольно необычно.
Новый подход к быстрому поиску жизни может однозначно обнаруживать ее всего одним инструментом. Он уже есть на борту обоих действующих американских марсоходов. Правда, NASA может не захотеть воспользоваться этой возможностью.
Чтобы понять, как именно мозг объединяет разные сенсорные сигналы, ученые проверили реакцию добровольцев на простые визуальные и слуховые стимулы, отслеживая изменения в движении точек на экране и в звуковых сигналах с помощью ЭЭГ. Результаты показали, что за обработку информации ответственны разные процессы, которые «сходятся» в едином механизме в решающий момент.
Астрономы подсчитали, что с поверхности летящего по Солнечной системе межзвездного объекта 3I/ATLAS каждую секунду испаряется около 40 килограммов водяного льда. Такую сильную кометную активность он проявил, будучи в три с половиной раза дальше Земли от Солнца. По мнению ученых, это довольно необычно.
Новый подход к быстрому поиску жизни может однозначно обнаруживать ее всего одним инструментом. Он уже есть на борту обоих действующих американских марсоходов. Правда, NASA может не захотеть воспользоваться этой возможностью.
Влияет ли формат знакомства на качество последующих романтических отношений в паре? Научные данные на этот счет разнятся. Новое исследование по вопросу представила группа психологов из Польши, Австралии и Великобритании. В попытке понять, при каком сценарии удовлетворенность отношениями выше, а любовь крепче — когда двое нашли друг друга в Сети или познакомились в жизни, — ученые опросили свыше 6000 тысяч человек из разных стран.
Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.
Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.
Команда исследователей из Сколтеха, МФТИ, Института искусственного интеллекта AIRI и других научных центров разработала метод, позволяющий не просто отличать тексты, написанные человеком, от сгенерированных нейросетью, но и понимать, по каким именно признакам классификатор принимает решение о том, является ли текст генерацией или нет. Анализируя внутренние состояния глубоких слоев языковой модели, ученые смогли выделить и интерпретировать численные признаки, отвечающие за стилистику, сложность и «степень уверенности» текста.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии