Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Нейросеть сама распознала производственные процессы по видео
Исследователи Центра искусственного интеллекта Сколтеха совместно с коллегами из Самарского университета разработали систему для автоматического выделения этапов производственных процессов по видеопотокам. С ее помощью нейросеть сможет сама определить отклонения от производственного процесса и даже предотвращать аварийные ситуации. Используемый подход самообучения (self-supervised learning) позволяет сократить затраты на ручную разметку данных и повысить устойчивость работы модели в реальных условиях.
Результаты исследования опубликованы в журнале IEEE Access (Q1) — одной из ведущих международных платформ в области инженерных и компьютерных наук.
Технология предназначена для временной сегментации видеопотоков с производственных площадок. Система понимает, на каком этапе находится та или иная операция — например, замена масла или сборка компонентов — и автоматически выделяет ключевые моменты в видеоматериале.
«Внедрение таких систем дает реальную экономию: теперь не нужно вручную разбирать сотни часов видео, чтобы обучить нейросеть распознавать производственные этапы, — поясняет ведущий инженер по машинному обучению Центра ИИ Сколтеха Максим Алешин. — Модель будет самостоятельно выделять закономерности в больших объемах необработанного материала. Это позволяет промышленным камерам в реальном времени выявлять отклонения от нормального хода процесса и помогать предотвратить аварийные ситуации».
Нейросеть обучается на большом массиве неразмеченных видеозаписей, самостоятельно выделяя ключевые признаки без участия разметчиков. Затем проходит дообучение на небольшой размеченной выборке и адаптируется под конкретные задачи (например, для классификации событий «замена колеса», «замена масла», «статическое состояние»). Система показала высокую скорость обработки видеопотоков, что делает ее пригодной для применения в реальном времени в промышленных условиях.
По словам руководителя исследовательской группы Центра ИИ Сколтеха Светланы Илларионовой, технология станет частью более широких решений для обеспечения промышленной безопасности и оптимизации производственных процессов.
В ближайших планах команды — расширить количество поддерживаемых сценариев и типов производственных операций, протестировать систему на реальных объектах с непрерывным мониторингом большого числа процессов, интегрировать подход в комплексные системы для умного видеонаблюдения на промышленных площадках.
«Именно такие проекты делают производство более безопасным и интеллектуальным. Мы уверены, что предложенная методика найдет применение и за пределами классических сборочных линий», — подчеркивает Светлана Илларионова.
К любопытным выводам привели наблюдения японских ученых за пестролицыми буревестниками. Оказалось, эти птицы испражняются в основном на лету, намеренно избегая такой возможности на поверхности воды. Очевидно, предположили исследователи, это облегчает движения в воздухе взрослым особям с добычей во рту.
Люди, которые были на грани смерти, затем иногда рассказывают, как мчались навстречу необычайно яркому свету или видели всю свою жизнь, проносящуюся перед глазами. Эти переживания на первый взгляд напоминают галлюцинации под воздействием некоторых психоделиков. Но есть и существенные различия, обнаружили исследователи из Великобритании.
Физики из МФТИ и Национального исследовательского центра «Курчатовский институт» разработали новую теоретическую модель, которая разрешает многолетние противоречия в описании одной из самых опасных неустойчивостей плазмы в установках термоядерного синтеза. Предложенный подход позволяет точнее предсказывать поведение плазменного шнура и открывает путь к созданию более надежных систем управления для будущих термоядерных реакторов, включая международный проект ITER.
Астрономы подсчитали, что с поверхности летящего по Солнечной системе межзвездного объекта 3I/ATLAS каждую секунду испаряется около 40 килограммов водяного льда. Такую сильную кометную активность он проявил, будучи в три с половиной раза дальше Земли от Солнца. По мнению ученых, это довольно необычно.
За последнее десятилетие ученые создали несколько сложных систем «мозг — компьютер», которые позволяли преобразовывать мозговую активность людей, лишившихся способности говорить из-за различных заболеваний, в речь. Однако до сих пор удавалось расшифровать лишь небольшое количество слов. Теперь в США создали алгоритм, благодаря которому удалось распознать до 54 процентов «речи».
Изображение блазара PKS 1424+240, полученное с помощью радиоинтерферометра VLBA, напомнило астрономам легендарное «Око Саурона» из «Властелина колец» — джет, пронизывающий кольцеобразное магнитное поле объекта, устремлен к нашей планете, а сам блазар может оказаться одним из наиболее ярких источников нейтрино в космосе.
Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.
Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.
Команда исследователей из Сколтеха, МФТИ, Института искусственного интеллекта AIRI и других научных центров разработала метод, позволяющий не просто отличать тексты, написанные человеком, от сгенерированных нейросетью, но и понимать, по каким именно признакам классификатор принимает решение о том, является ли текст генерацией или нет. Анализируя внутренние состояния глубоких слоев языковой модели, ученые смогли выделить и интерпретировать численные признаки, отвечающие за стилистику, сложность и «степень уверенности» текста.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии