Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые «персонализировали» подбор нейросети для распознавания лиц
Исследователи из НИУ ВШЭ в Нижнем Новгороде, МИСИС и AIRI разработали алгоритм, который подбирает лучшую нейронную сеть для распознавания лиц, учитывая характеристики мобильного устройства. Новый подход ускоряет выбор наиболее подходящей нейросети и позволяет добиться идентификации лиц с точностью до 99 процентов.
Исследование опубликовано в журнале IEEE Access. Нейронные сети, которые умеют распознавать лица, обычно требуют больших вычислительных мощностей для работы. Идеальной сети для всех устройств не существует, так как их характеристики существенно различаются: на одном смартфоне нейросеть может распознавать лица быстро, а на другом она же будет работать с неприемлемой для пользователя задержкой.
В машинном обучении существует «лотерейная» гипотеза. Согласно ей, в очень глубокой сети можно «выиграть в лотерею» — выбрать часть нейронов и связей между ними так, чтобы точность получаемой подсети оказалась практически такой же, как у исходной сети. Таких подсетей существует огромное количество, и найти наиболее точную, которая бы распознавала лицо за заданное время, чрезвычайно сложно. Можно измерить точность с использованием специального набора фотографий лиц, перебрав несколько случайно выбранных подсетей, и таким образом в конце концов найти лучшую. Однако процесс подбора может занять недели, при этом получится проверить лишь малую часть возможных подсетей.
Ученые из Лаборатории алгоритмов и технологий анализа сетевых структур НИУ ВШЭ — Нижний Новгород, МИСИС и AIRI предложили «персонализировать» систему подбора нейросети для распознавания лиц. Она максимально учитывает возможности конкретного мобильного устройства и позволяет сделать процесс выбора максимально быстрым — требуется всего 5–10 минут. Исследователи предложили использовать компаратор — алгоритм, который, не проводя измерений, за доли секунды выбирает из двух сетей-кандидатов наиболее точную до тех пор, пока не останется одна — самая подходящая.
«Допустим, у вас есть 500 маленьких подсетей. Все они сортируются, и из них выделяется сотня лучших, ожидаемо самых точных. Потом с помощью “мутации” и “скрещивания” из выбранных генерируются новые — еще более точные. Затем процесс повторяется. При “мутациях” случайным образом меняются некоторые части символьного описания подсети, при “скрещивании” к половине описания одной подсети добавляется половина второй.
Такой подход называется генетическим алгоритмом, или эволюционным поиском. Для выбора топовых решений мы предложили использовать компаратор на основе градиентного бустинга — популярный алгоритм машинного обучения для классификации табличных данных. Оказалось, что он работает точнее и качественнее и обучается намного проще», — рассказал профессор НИУ ВШЭ в Нижнем Новгороде Андрей Савченко.

Эксперименты показали, что предложенный метод устойчив к различным положениям лица. Алгоритм позволяет найти модели, у которых точность идентификации достигает 97–99 процентов.
Авторы технологии также разработали демонстрационное мобильное приложение для устройств на операционной системе Android. Оно позволяет проанализировать технические возможности гаджета, выбрать подходящую нейросеть, измерить время ее работы и найти одного и того же человека на двух фотографиях, выбранных из галереи устройства. Код разработки опубликован на платформе с открытым доступом.
Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.
Чтобы охотиться при температурах ниже нуля, пауки рода Clubiona выработали особые белки-антифризы. Изучив членистоногих, собранных в грушевых садах неподалеку от города Брно (Чехия), ученые раскрыли молекулярный механизм, позволяющий этим паукам не впадать в зимнюю спячку.
Наблюдая за галактикой CANUCS-LRD-z8.6 с помощью космической обсерватории «Джеймс Уэбб», астрономы обнаружили в ее центре сверхмассивную черную дыру. Хотя она существовала всего через 500 миллионов лет после Большого взрыва, ее масса оказалась рекордной для столь ранней эпохи.
Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
