Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Физики устроили землетрясение в лаборатории, что приблизило науку к управлению стихией
Ученым из Института динамики геосфер РАН и МФТИ впервые удалось воспроизвести медленное землетрясение с генерацией низкочастотных колебаний в лабораторных условиях. Анализ результатов показал, что по регистрируемым сейсмическим данным можно прогнозировать процессы в разломах земной коры, которые являются гипоцентрами реальных землетрясений.
Работа опубликована в журнале Scientific Reports. Наука добавляет промежуточные тона черно-белому восприятию окружающего мира человеком. В случае с землетрясениями раньше считалось, что существует две крайности: либо земная кора покоится, либо происходит землетрясение, которое невозможно не заметить. На самом же деле все сложнее. Землетрясение является следствием сдвига друг относительно друга блоков земной коры вдоль тектонического разлома.
Кроме обычных землетрясений, существуют «медленные», при которых происходят настолько слабые колебания земной коры, что зачастую люди не ощущают их вовсе, хотя энергия в ходе такого события может выделиться такая же, как при обычном землетрясении. Такие события возможно зафиксировать только инструментально. Поэтому ученым необходимо понять, что определяет формирование разных типов землетрясений и существуют ли общие закономерности между этими процессами.
«Потенциальная задача — научиться трансформировать обычное землетрясение в медленное. Сделать так, чтобы энергия выделялась, а разрушений за счет упругих колебаний не происходило. Но на сегодняшний день еще нет глубокого понимания механики и природы разных типов скольжений блоков земной коры вдоль разлома, приводящих к разным видам землетрясений. Мы пытаемся разобраться в этой механике. И в настоящий момент мы уже научились воспроизводить в лаборатории аналоги этих событий: медленные и быстрые землетрясения», — комментирует соавтор работы Алексей Остапчук, старший научный сотрудник Института динамики геосфер РАН, доцент кафедры теоретической и экспериментальной физики геосистем МФТИ.
Но в природе нельзя опуститься на глубину гипоцентра землетрясения и посмотреть, какой там материал, измерить напряжения. Единственный способ получить хоть какую-то информацию о текущих процессах на глубине — это анализ сейсмических колебаний, идущих из зоны разлома, либо колебаний, которые проходят сквозь разломную зону и могут нести информацию о ее состоянии. Авторы работы исследовали акустические колебания, которые возникают при зарождении лабораторных землетрясений, чтобы «прочитать» историю механических движений в зоне разлома и предсказать момент начала землетрясения.
«Мы использовали при моделировании тектонического разлома гранитные блоки, пространство между которыми заполняем гранулированными материалами (песком, глиной, гранитной крошкой) с разными характеристиками (размером частиц, влажностью). В реальном разломе такая же раздробленная среда, только масштаб гораздо больше.
При разных землетрясениях излучаются свои характерные волновые формы: при быстрых (“обычных”) землетрясениях мы видим импульс с резким внезапным началом, а при медленных событиях колебания нарастают постепенно, их начало сложно определить, поэтому в лабораторных условиях раньше их не обнаруживали. Мы же в этой работе показали, что важно смотреть наряду с амплитудой и энергией на волновую форму импульса и что медленные и быстрые типы землетрясений можно наблюдать в лабораторных экспериментах», — поясняет Алексей Остапчук.
Обработав огромный объем сейсмоакустических данных, авторы выделили два принципиальных класса импульсов. Оказалось, что по форме акустических импульсов действительно можно судить о том, что происходит с разломом, причем быстрые и медленные микрособытия отвечают за разные структурные зоны в этом разломе. Быстрые микрособытия — за разрушение силового каркаса и эволюцию напряженной структуры. Медленные же связаны с подвижностью отдельных разгруженных элементов разломной зоны. Таким образом, выявленные закономерности позволяют предположить, что скорое землетрясение можно предсказать по анализу сейсмоакустических данных.
Следующим шагом, приближающим возможность трансформирования быстрых землетрясений в медленные, должно стать изучение техногенно-тектонических землетрясений, которые непосредственно связаны с инженерной деятельностью человека, а именно, добычей минерального сырья. Такие события происходят на глубинах, где непосредственно происходит разработка месторождений. Зная структурные особенности разломов и блоков на месторождении за счет механических действий, можно будет прогнозируемо изменить режим скольжения, что позволит отработать методы преобразования быстрого землетрясения в медленное.
Существуют два разных подхода. Первый подход — за счет внешнего взрывного воздействия попытаться снизить интенсивность землетрясения, то есть разменять одно большое землетрясение на множество мелких. Но этот путь зачастую не дает никакого выигрыша в безопасности для людей. Второй способ — это инжекция специальных жидкостей или флюидов в разломную зону. Тогда в зависимости от свойств флюида хрупкое разрушение переходит в механизмы вязкопластичной деформации.
«Мы в своих лабораторных экспериментах начинаем понимать, какую жидкость надо инжектировать в разлом, какие свойства этой жидкости должны быть и какой характерный размер зоны воздействия должен быть. Следующий шаг — выявление особенностей структуры разломов на основе сейсмоакустических данных и, тем самым, определение зоны воздействия. Это будет новый этап нашего понимания природы землетрясений», — заключает Алексей Остапчук. Работа выполнена при поддержке Российского научного фонда.
Лето 2025 обещает насыщенную линейку научно-фантастических сериалов на ведущих стриминговых платформах. От адаптаций культовых романов до масштабных космических одиссей — мы отобрали проекты, на которые стоит обратить внимание.
Международная команда ученых оценила связь между длительностью физической активности, ее интенсивностью, риском смерти от всех причин и вероятностью развития сердечно-сосудистых и онкологических заболеваний.
Наблюдения, проведенные космическим аппаратом NASA «Юнона», показали, что магнитное поле Юпитера и его мощная магнитосфера, заполненная ионизированным газом, могут порождать вблизи полюсов газового гиганта новый тип плазменных волн. Ничего подобного ранее ученые не фиксировали.
Лето 2025 обещает насыщенную линейку научно-фантастических сериалов на ведущих стриминговых платформах. От адаптаций культовых романов до масштабных космических одиссей — мы отобрали проекты, на которые стоит обратить внимание.
Международная команда ученых оценила связь между длительностью физической активности, ее интенсивностью, риском смерти от всех причин и вероятностью развития сердечно-сосудистых и онкологических заболеваний.
Ученые разработали высокоэффективный платина-кобальтовый катализатор для производства водорода из метана. Сырьем может стать возобновляемый источник — биогаз, образующийся на свалках при разложении органики, что позволит получить «зеленый» водород. Открытие совершила команда исследователей из РГУ нефти и газа имени И.М. Губкина, Института нефтехимического синтеза имени А.В. Топчиева РАН и Института общей и неорганической химии имени Н.С. Курнакова РАН.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии