Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Найден способ повысить точность распознавания действий человека с камер видеонаблюдения
На стратегически важном промышленном производстве, в местах большого скопления людей, торговых центрах, концертных залах и образовательных учреждениях устанавливают камеры видеонаблюдения. В них встроена технология распознавания движений человека, которая фиксирует и классифицирует их при появлении в кадре изменяющегося объекта. В зависимости от характера действий и установленных ограничений она формирует ответную реакцию. В случае опасности можно инициировать меры предотвращения чрезвычайных происшествий. Однако правильная работа такой системы и своевременное реагирование зависит от точности и скорости распознавания ситуаций. Ученые Пермского Политеха предложили математическую модель описания человека, применение которой повышает точность распознавания изображений с видеокамер до 95 процентов.
Статья опубликована в журнале «Вестник ПНИПУ. Электротехника, информационные технологии, системы управления». Исследование проведено в рамках реализации программы «Приоритет 2030».
Для распознавания действий с камер видеонаблюдения нужно выделить человека как отдельный объект, выявить информацию о положении его тела и последовательности движений. При этом необходимо хранить эти данные для дальнейшей обработки и решения задачи классификации. Важную роль в этом процессе играет математическая модель и способ ее представления.
Модели описания по набору кадров, когда действие в каждом из них идентифицируется отдельно, имеют недостаток – в поле могут находиться другие люди и предметы, из-за которых информация анализируется некорректно. Для устранения этого фактора чаще используют векторную модель – движения определяют при помощи последовательности координат ключевых точек в скелете человека. Для повышения точности их группируют, что позволяет алгоритму находить и обрабатывать информацию о различных частях тела.
Для точного распознавания объекта в пространстве данные подвергают процедуре нормализации, при которой ключевые точки из пиксельных переводятся в реальные значения. Существующие способы не учитывают большую вариативность поворотов и положения человека в пространстве. Одни и те же движения, выполненные при разном смещении относительно камеры, вероятнее всего, будут распознаны, как разные. Часто это затрудняет работу системы, требуется значительное увеличение объема памяти устройства и усложнение алгоритмов расчета, что не всегда практически реализуемо с точки зрения временных и финансовых ресурсов.
Ученые Пермского Политеха нашли способ ускорить обработку получаемого видеоматериала и повысить точность определения движений объекта. Для этого они проанализировали существующие модели распознавания скелетов людей и используемые алгоритмы обработки. По результатам исследования они предложили внедрить в систему видеонаблюдения оригинальные модель и технологию нормализации видеоизображений.
«Мы создали упрощенную модель, в которой отсутствует лишняя для наших исследований информация, например, о положении пальцев рук. Зачастую их местонахождение зашумлено, но при этом на обработку также уходит время, усложняется процесс распознавания действий. Ключевыми точками в нашей модели стали глаза, плечи, бедра, локти, кисти, колени и ступни. Также мы предложили алгоритм преобразования информации о движении скелета человека, который распознает действия, сравнивая для большей точности данные с разных камер или под разными углами», – рассказывает Александр Князев, аспирант кафедры «Информационные технологии и автоматизированные системы» ПНИПУ.
«Эксперименты показали, что наша модель и технология нормализации видеоизображений позволили достичь точности распознавания в 95 процентов. А применение первичных данных обеспечивало лишь 35 процентов точности», – комментирует Рустам Файзрахманов, заведующий кафедрой «Информационные технологии и автоматизированные системы» ПНИПУ, доктор экономических наук.
Внедрение разработки ученых Пермского Политеха позволит улучшить точность распознавания действий человека с камер видеонаблюдения, что эффективно для мониторинга и сохранения безопасности на производственных предприятиях, охраняемых территориях и общественных местах. Интерес к разрабатываемой технологии уже проявили несколько промышленных компаний. Инициатива поддержана Фондом содействия инноваций – одобрен грант по программе Старт-1.
Международная команда ученых оценила связь между длительностью физической активности, ее интенсивностью, риском смерти от всех причин и вероятностью развития сердечно-сосудистых и онкологических заболеваний.
Исследователи разобрались с тем, что происходит в организме пластикоядных гусениц при поедании и переваривании самого распространенного пластика. Оказалось, что для их здоровья это не проходит бесследно, но, похоже, есть способ помочь и гусеницам, и осуществляемому ими процессу разрушения искусственных полимеров.
Кража лошадей была серьезной проблемой для крестьянских хозяйств в Российской империи. Особенности этого явления, включающие жестокие уголовные наказания, крестьянский самосуд и межэтнические конфликты, выявили в ходе исследования юридических источников историки из МФТИ и РЭУ имени Г.В. Плеханова.
Принято считать, что люди с развитыми когнитивными способностями отличаются высокими моральными принципами. Ученые из Великобритании решили проверить этот тезис научными методами и пришли к противоположному выводу.
Подобрать тип физической активности, который лучше всего подходит человеку, можно исходя из особенностей его характера. Психологи из Великобритании определили, что люди с разными чертами личности получают больше удовольствия от разных видов спорта.
В июне 2025 года ВК покинули 1,2 миллиона авторов контента. Это резкое ускорение их бегства в сравнении с предшествующими месяцами. Одновременно число авторов на других платформах растет, в результате по этому показателю соцсеть обогнал не только Telegram, но и запрещенный Instagram*. Причиной происходящего многие наблюдатели посчитали совокупность решений менеджмента компании за последние годы.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии