• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
09.02.2021
Сколтех
2
691

Анализ движений пациента методами машинного обучения поможет в диагностике болезни Паркинсона

4.5

Ученые Сколтеха и Федерального медицинского биофизического центра имени А. И. Бурназяна разработали систему так называемого второго мнения, основанную на видеоанализе данных методами искусственного интеллекта. С помощью этой системы медики смогут получать более объективные данные для диагностики болезни Паркинсона уже на ранней стадии. Предлагаемый подход позволяет правильно диагностировать заболевание, определять его стадию, корректировать лечение и разрабатывать рекомендации по глубокой стимуляции мозга для пациентов с подтвержденным диагнозом.

Анализ движений пациента методами машинного обучения поможет в диагностике болезни Паркинсона / ©Getty images / Автор: Владимир Богданов

Статья с описанием результатов исследования опубликована в журнале IEEE Sensors Journal. Население в мире стареет, что приводит в том числе к росту числа людей, страдающих нейродегенеративными заболеваниями. Через несколько десятилетий человечество может столкнуться с настоящей пандемией болезни Паркинсона. Сегодня этот недуг уже лидирует среди других заболеваний по темпам роста заболеваемости. Кроме того, болезнь серьезно сказывается на качестве жизни пациентов, и диагностировать ее необходимо как можно раньше.

Главная сложность диагностики состоит в том, чтобы отличить болезнь Паркинсона от других заболеваний со схожими двигательными нарушениями, например, эссенциального тремора. Единого биомаркера для надежной диагностики болезни Паркинсона до сих пор не существует, и врачи вынуждены полагаться на собственные наблюдения, что зачастую приводит к постановке неверного диагноза, а ошибка становится очевидной лишь на стадии анатомо-патологического исследования.

Старший преподаватель Сколтеха Андрей Сомов и его коллеги создали так называемую систему второго мнения, позволяющую при помощи алгоритмов машинного обучения анализировать видеозаписи, на которых пациенты выполняют определенные задания на моторику. Ученые провели небольшое пилотное исследование, показавшее, что разработанная система позволяет с высокой эффективностью распознавать потенциальные признаки болезни Паркинсона и дифференцировать это заболевание от эссенциального тремора.

Система способна записывать видео и проводить его анализ, что значительно ускоряет диагностику, делая этот процесс максимально комфортным для пациентов. Исследователи разработали комплекс из 15 простых упражнений, в которых испытуемым предлагалось выполнить несколько привычных действий или движений: пройти, сесть на стул, встать со стула, сложить полотенце, налить воду в стакан и коснуться носа кончиком указательного пальца.

В комплекс упражнений были включены задания на крупную и мелкую моторику, задания с полным отсутствием движения (для выявления тремора в состоянии покоя), а также некоторые другие действия, по которым врачи определяют наличие тремора.

«Упражнения разрабатывались под руководством врачей-неврологов и с использованием различных источников, включая шкалы оценки болезни Паркинсона и результаты предыдущих исследований в этой области. Для каждого возможного симптома заболевания мы разработали специальное упражнение», − поясняет первый автор статьи аспирант Сколтеха Екатерина Коваленко.

В пилотном исследовании были задействованы 83 пациента с нейродегенеративными заболеваниями и здоровые люди. Выполняемые ими задания записывались на видео, а полученные видеозаписи обрабатывались при помощи специальной программы, в которой на тело человека наносились контрольные точки, соответствующие суставам и другим частям тела. Таким образом ученые получили упрощенную модель движущихся объектов. Затем проводился анализ моделей с использованием методов машинного обучения.

Исследователи считают, что использование видеозаписей и методов машинного обучения дает более объективную картину для диагностики, что позволяет исследователям и врачам выявлять мелкие нюансы и характерные особенности различных стадий заболевания, которые не видны невооруженным глазом.

«Предварительные результаты исследования указывают на то, что анализ видеоданных может способствовать повышению точности диагностики болезни Паркинсона. Наша цель – получить второе мнение, которое ни в коей мере не может полностью заменить мнение врача и клинициста. Кроме того, метод, основанный на использовании видео, является не только неинвазивным и более универсальным по сравнению с инструментальными методами, но и более комфортным для пациентов», − говорится в статье.

«Методы машинного обучения и компьютерного зрения, которые мы использовали в этой работе, уже достаточно хорошо проявили себя в целом ряде медицинских приложений. Им можно смело доверять. Да и диагностические упражнения для пациентов с болезнью Паркинсона прорабатывались неврологами уже достаточно давно.

А вот что действительно стало новизной исследования, так это продемонстрированное нами количественное ранжирование этих упражнений в соответствии с их вкладом в точность и специфичность финальной диагностики. Такой результат мог получиться только в результате слаженной работы команды докторов, математиков и инженеров», − отмечает соавтор статьи доцент Сколтеха Дмитрий Дылов.

В предыдущих исследованиях группа Сомова использовала также носимые датчики. В одной из своих работ по этой проблематике ученые смогли при помощи носимых датчиков определить, какие из упражнений наиболее информативны для целей диагностики болезни Паркинсона с использованием машинного обучения.

«Мы проводили исследование в тесном взаимодействии с врачами и другими медицинскими работниками, которые делились с нами своими идеями и опытом. Специалисты из двух, казалось бы, совсем разных областей объединились в своем стремлении помочь людям – наблюдать за этим процессом было очень интересно. К тому же, у нас была возможность следить за процессом на всех его этапах − от разработки методологии до анализа данных с помощью машинного обучения», − добавляет аспирант Сколтеха Екатерина Коваленко.

«Подобная коллаборация между врачами и учеными по анализу данных позволяет учесть многие важные клинические нюансы и детали, которые приводят к наилучшей реализации проекта. Мы как врачи видим в этом огромные перспективы и помощь. Помимо дифференциальной диагностики, нам необходимы инструменты для объективизации колебаний двигательных состояний у пациентов с болезнью Паркинсона, которые позволят более персонифицированно подходить к подбору терапии, а также принимать решения о необходимости нейрохирургического лечения, а в дальнейшем с помощью систем оценивать и результат операции», − рассказывает соавтор статьи невролог Екатерина Бриль.

По словам Андрея Сомова, следующая задача команды – попытаться повысить точность диагностики болезни Паркинсона и определения стадий заболевания за счет объединения данных видеоанализа и показаний датчиков.

«Мы не должны забывать и об инновационной составляющей нашей работы: по мнению нашей команды, полученные результаты целесообразно реализовать в виде интуитивно понятного программного продукта. Мы считаем, что результаты наших совместных исследований позволят повысить точность диагностики болезни Паркинсона и изучить развитие болезни с точки зрения анализа данных – наша команда продолжает планировать и готовиться к новым пилотным исследованиям», − добавил он. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Сколковский институт науки и технологий — негосударственный технологический университет, расположенный в инновационном центре Сколково. Институт был создан в 2011 году при поддержке Массачусетского технологического института. Модель института предусматривает тесную интеграцию технологического образования, исследовательской работы и предпринимательских навыков. Институт ведёт обучение по программам магистратуры и PhD, рабочий язык — английский.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
3 декабря
Елизавета Александрова

Американская лунная программа «Артемида» предусматривает экспедиции длительностью от нескольких дней до долгих недель и даже месяцев, но луномобиля для передвижения экипажа по поверхности спутника Земли на сегодня нет. Поэтому космическое агентство США продумывает план действий на случай, если астронавты окажутся далеко от базы и кто-то из них внезапно не сможет идти самостоятельно.

3 декабря
Варвара Кравцова

Сражались ли амазонки на территории нашей страны, как развивались первые крупные города и чем древний геном выносливее современного — об этом нам рассказал Харис Мустафин, заведующий лабораторией исторической генетики, радиоуглеродного анализа и прикладной физики МФТИ.

3 декабря
Редакция Naked Science

На IV Конгрессе молодых ученых, прошедшем на федеральной территории Сириус, активно обсуждали не только атомную энергетику, но и перспективные термоядерные проекты. Сотрудник Naked Science задал вопрос о том, может ли российское участие в ИТЭР постигнуть судьба российского же участия в ЦЕРН, из которого отечественных ученых «попросили». Представитель госкорпорации отметил ряд причин, по которым такой сценарий сомнителен.

3 декабря
Елизавета Александрова

Американская лунная программа «Артемида» предусматривает экспедиции длительностью от нескольких дней до долгих недель и даже месяцев, но луномобиля для передвижения экипажа по поверхности спутника Земли на сегодня нет. Поэтому космическое агентство США продумывает план действий на случай, если астронавты окажутся далеко от базы и кто-то из них внезапно не сможет идти самостоятельно.

3 декабря
Варвара Кравцова

Сражались ли амазонки на территории нашей страны, как развивались первые крупные города и чем древний геном выносливее современного — об этом нам рассказал Харис Мустафин, заведующий лабораторией исторической генетики, радиоуглеродного анализа и прикладной физики МФТИ.

30 ноября
Редакция Naked Science

Последние полвека темпы развития науки снижаются. В быту это пока незаметно, потому что от фундаментального открытия до его реализации в технике проходят десятки лет. Но замедление длится слишком долго, то есть вскоре мы столкнемся с замедлением развития техники в целом. Naked Science решил дать перевод видео физика и популяризатора Сабины Хоссенфельдер на эту тему. Что же не так с современной наукой и можно ли что-то исправить?

16 ноября
Evgenia

Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.

28 ноября
Елизавета Александрова

Обсерватории постоянно улавливают «мигающие» радиосигналы из глубин Вселенной. Чаще всего их источниками оказываются нейтронные звезды, которые за это и назвали пульсарами. Но к недавно обнаруженному источнику GLEAM-X J0704-37 они, по мнению астрономов, отношения не имеют.

25 ноября
Полина Меньшова

Многие одинокие люди считают, что окружающие не разделяют их взглядов. Психологи из США решили проверить, так ли это на самом деле, и обнаружили общую особенность у людей с недостаточным количеством социальных связей.

[miniorange_social_login]

Комментарии

2 Комментария
-
0
+
как много букв и как мало "инновационной составляющей"
-
0
+
Это конечно хорошо, это конечно замечательно. Но вот может стоило бы все это делать в контексте подключения к платформе IBM Watson? Просто вряд ли можно будет этот проект развивать дальше только на материалах росс больных, слишком мал будет объем обкатки программы. А то ведь опять изобретаем свой самостийный велосипед.
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно