Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Улучшен способ создания 3D-модели горных пород с помощью рентгеновской томографии
Ученые Пермского Политеха разработали метод, который позволяет решить проблемы исследования образцов горной породы с помощью томографа путем создания цифровых моделей керна. Для этого они написали отечественную программу, которая сама производит вычислительный эксперимент. Это позволяет точно контролировать параметры порового пространства и плотности скелета горной породы, а также наиболее достоверно интерпретировать структуры пустотного пространства по результатам рентгеновской томографии.
Для эффективной добычи нефти нужно знать, как изнутри устроена горная порода пласта-коллектора и каковы ее свойства: пористость, проницаемость, водонасыщенность, наличие в ней трещин и каверн (крупных пустот). Для изучения этих параметров ученые извлекают керн (образец горной породы) из скважин с глубин до трех тысяч метров, изготавливают из него цилиндры высотой и диаметром 30 миллиметров и изучают с помощью рентгеновского томографа, который делает серию рентгеновских снимков образца, а затем преобразует их в 3D-модель.
Такой метод позволяет исследовать горную породу без разрушения и визуализировать ее внутреннюю структуру, включая поры. Однако применение томографии для наиболее распространенных образцов керна размером 30 миллиметров ограничено, так как размер многих пустот оказывается меньше, чем может различить томограф, а значит, невозможно исследовать образец подробно.
Также трудной остается задача отделения минерального скелета горной породы от воздуха в порах и трещинах внутри образца. Ученые Пермского Политеха разработали метод, который позволяет решить проблему путем создания цифровых моделей керна. Для этого они написали отечественную программу, которая сама производит вычислительный эксперимент. Это позволяет точно контролировать параметры порового пространства и плотности скелета горной породы, а также наиболее достоверно интерпретировать структуры пустотного пространства по результатам рентгеновской томографии.
Статья опубликована в журнале «Георесурсы». Исследование выполнено при поддержке Министерства науки и высшего образования России.
При поиске, разведке и эксплуатации нефтяных и газовых месторождений необходимо знать фундаментальные свойства пород, в которых накапливаются углеводороды (они называются породами-коллекторами). От их характеристик зависят объемы извлекаемых запасов и методы добычи (например, необходимость гидроразрыва пласта). Их изучением занимаются ученые – петрофизики, а свои исследования они проводят на керне – образцах горных пород, которые извлекают из скважин при бурении.
Пористость и проницаемость – ключевые характеристики пласта. По ним можно определить, как жидкость будет двигаться, сколько нефти потенциально содержится и как легче ее извлечь. Непосредственно измерить их можно только на образцах керна. В последние годы их исследования все больше проводятся с помощью рентгеновской томографии. Трехмерные модели, полученные в результате томографии, позволяют видеть поры и трещины, измерять их размеры и форму, а также изучать минеральный состав породы, однако при этом большую проблему представляет задача определения границы между минеральным скелетом и пустотным пространством образца.
Компьютерная томография для образцов керна стандартного размера 30 на 30 миллиметров может визуализировать только крупные пустоты. Неизученными остаются мелкие (менее 0,1 миллиметра), от которых в немалой степени зависит, сколько нефти удастся извлечь из пласта. Предпринимаются попытки комбинировать томографию с другими способами, но такие подходы упираются в эффект масштаба из-за значительных различий в размерах изучаемых неоднородностей (от долей миллиметров до нанометров).
Для решения этих проблем ученые Пермского Политеха применили метод создания искусственных моделей (их называют цифровыми фантомами) и провели с их помощью вычислительный эксперимент.
– Компьютерное моделирование решает главную проблему – невозможность полного и достоверного измерения свойств реальных образцов. В них мы не контролируем все параметры: например, не можем заглянуть в каждую пору и измерить ее точный объем, знать плотность каждой составной части и так далее. А все это в конечном итоге необходимо для понимания того, сколько нефти может содержаться в коллекторе и как она в нем движется. Поэтому мы создали такие модели на компьютере для улучшения процесса исследования реальных образцов, – комментирует Ян Савицкий, инженер кафедры геологии нефти и газа ПНИПУ, кандидат технических наук.
– Для получения фантомов с полностью заданными параметрами мы написали программу на языке Python. С ее помощью мы разработали виртуальные образцы с разными свойствами – так, чтобы имитировать настоящий керн. При этом мелкие поры в них составляли большинство (75-95 процента от объема), а соотношения между долями пор крупного размера задавалось случайно. Затем мы повторили процедуру томографического исследования, как если бы мы исследовали реальные фрагменты горной породы: воспроизвели процесс получения рентгеновских 2D-снимков и из них создали трехмерную структуру.
Таким образом было получено и проанализировано 124 цифровых фантома. Этот способ позволил нам сравнить характеристики исходной модели и полученной томограммы и предложить собственную модель для повышения достоверности визуализации порового пространства в образцах керна. Это улучшит оценку пористости реальных образцов по результатам рентгеновской компьютерной томографии, – рассказывает Сергей Галкин, профессор, декан горно-нефтяного факультета, доктор геолого-минералогических наук.
Модель, созданная учеными Пермского Политеха, имеет хорошее качество прогноза: применение модели прогноза граничного значения на реальных данных томографии на 46 образцах керна пластов коллекторов нефтяных месторождений Пермского края (которые не использовались для разработки модели) показало хорошее соответствие при оценке коэффициента пористости, коэффициент корреляции между фактическим и прогнозным значением r=0,751 (чем ближе значение r к единице, тем лучше корреляция).
Так исследование политехников повысит эффективность обработки результатов томографии образцов нефтегазоносных пород, а также поможет в разработке отечественных программ для анализа таких томографий.
Астрономы подсчитали, что с поверхности летящего по Солнечной системе межзвездного объекта 3I/ATLAS каждую секунду испаряется около 40 килограммов водяного льда. Такую сильную кометную активность он проявил, будучи в три с половиной раза дальше Земли от Солнца. По мнению ученых, это довольно необычно.
За последнее десятилетие ученые создали несколько сложных систем «мозг — компьютер», которые позволяли преобразовывать мозговую активность людей, лишившихся способности говорить из-за различных заболеваний, в речь. Однако до сих пор удавалось расшифровать лишь небольшое количество слов. Теперь в США создали алгоритм, благодаря которому удалось распознать до 54 процентов «речи».
Ученые провели эксперимент и установили, что вблизи машины черного цвета, простоявшей на солнце несколько часов, температура поднималась на 3,8 °C выше, чем у асфальта на прилегающем свободном участке.
Астрономы подсчитали, что с поверхности летящего по Солнечной системе межзвездного объекта 3I/ATLAS каждую секунду испаряется около 40 килограммов водяного льда. Такую сильную кометную активность он проявил, будучи в три с половиной раза дальше Земли от Солнца. По мнению ученых, это довольно необычно.
Изображение блазара PKS 1424+240, полученное с помощью радиоинтерферометра VLBA, напомнило астрономам легендарное «Око Саурона» из «Властелина колец» — джет, пронизывающий кольцеобразное магнитное поле объекта, устремлен к нашей планете, а сам блазар может оказаться одним из наиболее ярких источников нейтрино в космосе.
Влияет ли формат знакомства на качество последующих романтических отношений в паре? Научные данные на этот счет разнятся. Новое исследование по вопросу представила группа психологов из Польши, Австралии и Великобритании. В попытке понять, при каком сценарии удовлетворенность отношениями выше, а любовь крепче — когда двое нашли друг друга в Сети или познакомились в жизни, — ученые опросили свыше 6000 тысяч человек из разных стран.
Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.
Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.
Команда исследователей из Сколтеха, МФТИ, Института искусственного интеллекта AIRI и других научных центров разработала метод, позволяющий не просто отличать тексты, написанные человеком, от сгенерированных нейросетью, но и понимать, по каким именно признакам классификатор принимает решение о том, является ли текст генерацией или нет. Анализируя внутренние состояния глубоких слоев языковой модели, ученые смогли выделить и интерпретировать численные признаки, отвечающие за стилистику, сложность и «степень уверенности» текста.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии