Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Глубокое машинное обучение использует «язык белков», чтобы предсказать их свойства
Модели глубокого обучения (deep learning) хорошо зарекомендовали себя при работе с текстами и речью. Однако они также эффективны для решения задач молекулярной биологии и биомедицины, в том числе предсказания функциональных свойств белков на основе их аминокислотной последовательности.
На протяжении многих лет биоинформатики, генетики, нейрофизиологи и другие специалисты в области наук о живом продолжают выяснять биологические функции генов и их продуктов — белков. Для этого им приходится использовать большие и порой имеющие сложную структуру данные, с которыми просто невозможно справиться без помощи машинного обучения и анализа данных.
Напомним, белки — это крупные биологические молекулы со сложной структурой. Они представляют собой длинные цепочки (полимеры), состоящие из множества связанных звеньев-аминокислот (мономеров). Белки могут выполнять самые различные и очень специфичные функции — от формирования «клеточного скелета» до катализа химических реакций, работы в качестве «молекулярных машин» и регуляции различных биологических процессов. Это возможно благодаря их особой трехмерной структуре, которая, в свою очередь, определяется именно аминокислотной последовательностью белка.
В то же время установить связь между аминокислотной последовательностью, структурой белка и его функциями — непростая и пока далеко не решенная задача. Поэтому исследователи из трех различных университетов Турции опубликовали в журнале Nature Machine Intelligence работу, в которой оценили возможность задействовать модели глубокого обучения (deep learning), исходно предназначенные для лингвистического анализа.
Глубокое обучение — разновидность машинного обучения на основе нейронных сетей. Оно называется глубоким, поскольку структура его сетей состоит из нескольких входных, выходных и расположенных между ними скрытых слоев нейронов. Авторы новой публикации рассмотрели как сильные стороны этого подхода, так и его недостатки.
«Полученные с помощью молекулярной биологии данные можно представить в виде языка (по сути, языка генов/белков) таким образом, что последовательность гена или белка окажется чем-то вроде имеющего определенный смысл предложения на естественном языке», — рассказал один из авторов, Тунча Доган (Tunca Dogan). Он считает, что значение такого «языка белков» сводится к особым биологическим, физическим и химическим свойствам этих биомолекул.
«В соответствии с этим работа ставила своей целью построение моделей машинного обучения, которые используют заимствованное у языковых моделей векторное представление в многомерном пространстве (high dimensional numerical embeddings. — Прим. ред.) для белков в качестве данных на входе и которые точно предсказывают их функциональные свойства».
Чтобы успешно оценить модели «белкового языка» и их показатели качества, исследователям пришлось для начала подготовить большие наборы надежных данных. Каждый из таких наборов имеет определенный «уровень сложности».
С помощью этого метода турецкие ученые смогли оценить пригодность разных архитектур «языкового моделирования» (включая BERT, T5, XLNet и ELMO) для выявления в последовательности белков скрытых паттернов. Исследователи считают, что эти незаметные на первый взгляд свойства последовательностей дают ценную информацию о функциональных признаках белков.
«Вероятно, самым примечательным результатом стало то, что эти модели глубокого обучения смогли успешно установить функциональные свойства белков, руководствуясь исключительно последовательностью аминокислот, хотя это довольно трудная задача. К тому же это хорошо согласуется с результатами других недавних исследований по предсказанию структуры (например, AlphaFold2 от Deepmind и RoseTTAFold от лаборатории Бейкера), в которых в качестве исходных данных использовали именно последовательность», — добавил Доган.
Новый подход и подобные ему методики могут иметь множество практических приложений, включая разработку персонализированных методов лечения.
Лето 2025 обещает насыщенную линейку научно-фантастических сериалов на ведущих стриминговых платформах. От адаптаций культовых романов до масштабных космических одиссей — мы отобрали проекты, на которые стоит обратить внимание.
Американские ученые сообщили об успешной фотонакачке фотонно-кристаллического поверхностно-излучающего лазера c захороненным диэлектриком на безопасной для глаз длине волны при комнатной температуре. Это новый этап в развитии лазерных технологий.
Галактики — спутники Млечного Пути преимущественно представляют собой карликовые сфероидальные системы. Астрономам известно о существовании примерно 60 таких объектов, однако результаты нового исследования показали, что вокруг нашей Галактики могут вращаться до 100 «пропавших» спутников.
Лето 2025 обещает насыщенную линейку научно-фантастических сериалов на ведущих стриминговых платформах. От адаптаций культовых романов до масштабных космических одиссей — мы отобрали проекты, на которые стоит обратить внимание.
Международная команда ученых оценила связь между длительностью физической активности, ее интенсивностью, риском смерти от всех причин и вероятностью развития сердечно-сосудистых и онкологических заболеваний.
Ученые разработали высокоэффективный платина-кобальтовый катализатор для производства водорода из метана. Сырьем может стать возобновляемый источник — биогаз, образующийся на свалках при разложении органики, что позволит получить «зеленый» водород. Открытие совершила команда исследователей из РГУ нефти и газа имени И.М. Губкина, Института нефтехимического синтеза имени А.В. Топчиева РАН и Института общей и неорганической химии имени Н.С. Курнакова РАН.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии