• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
30 апреля, 10:35
Игорь Байдов
1 693

Магнетары могут «‎ковать» золото

❋ 5.1

В 2004 году ученые наблюдали мощную вспышку в гамма-диапазоне от магнетара SGR 1806-20, расположенного в 50 тысячах световых лет от Земли. Нейтронная звезда за несколько секунд испустила больше энергии, чем Солнце за миллион лет. Происхождение вспышки установили быстро. Но спустя 10 минут за ней последовала другая, гораздо слабее и короче. Ее природа оставалась неизвестной на протяжении 20 лет. Теперь исследователи выяснили, что она ознаменовала рождение тяжелых элементов, таких как золото и платина.

магнетар SGR 1806-20
Вспышка магнетара SGR 1806-20 в представлении художника / © NASA, JPL-Caltech

Большинство элементов тяжелее железа, включая золото и платину, появляются в экстремальных условиях в результате так называемого r-процесса — образования более тяжелых ядер из более легких путем последовательного захвата нейтронов во время ядерных реакций. До недавнего времени считалось, что r-процесс возможен лишь в момент столкновения двух нейтронных звезд — сверхплотных остатков «погибших» светил, вещество которых состоит в основном из нейтронов.

Однако в 2017 году, после первого подтвержденного наблюдения такого события, стало ясно: одних столкновений недостаточно, чтобы объяснить обилие тяжелых элементов в Галактике. Ученые начали подозревать, что в космосе есть и другие «‎кузницы» тяжелых элементов.

Тогда исследователи обратили внимание на магнетары — нейтронные звезды, обладающие исключительно сильным магнитным полем, в триллионы раз сильнее земного. Эти объекты периодически производят мощнейшие вспышки гамма- и рентгеновского излучения.

В декабре 2004 года астрофизики стали свидетелями одной из таких вспышек. Ее произвел магнетар SGR 1806-20, расположенный в 50 тысячах световых лет от Земли.

Основной выброс энергии длился всего несколько секунд, но за это время нейтронная звезда высвободила столько же энергии, сколько Солнце излучает за миллион лет. Через 10 минут после основного импульса приборы зарегистрировали вторую, более слабую вспышку, но ученые долгое время не могли разгадать ее природу.

Команда астрофизиков из США под руководством Брайана Метцгера (Brian Metzger) из Центра вычислительной астрофизики при Институте Флэтайрон в Нью-Йорке проанализировала астрономические данные за 20 лет наблюдений, выполненных космическими телескопами, и выяснила, что второй сигнал тоже исходил от магнетара SGR 1806-20. Он ознаменовал собой рождение тяжелых элементов.

По мнению исследователей, в условиях этой вспышки за считаные минуты произошел r-процесс, что привело к образованию тяжелых элементов, включая золото, платину и урана. Масса только одного такого «урожая» составила 2×10²⁴ килограмма, что эквивалентно массе 27 лун.

«Раньше мы видели рождение тяжелых элементов лишь при слиянии нейтронных звезд. Теперь есть второй подтвержденный источник», — объяснил Метцгер.

SGR 1806-20
Местоположение SGR 1806-20 на небе, если бы он был бы видим человеческим глазом / © Wikimedia

Ученые оценили, что подобные вспышки могут производить до 10 процентов всех тяжелых элементов в Млечном Пути. Это объясняет загадку, почему в молодых галактиках золота и платины оказалось намного больше, чем должно быть по расчетам. Магнетары начинают «работать» раньше, чем успевают сталкиваться нейтронные звезды. Они активны уже в начале жизни галактик и успевают произвести такое количество тяжелых элементов, которое невозможно объяснить одними столкновениями.

Как же работает этот процесс? При мощной вспышке магнетар сбрасывает часть своей коры — слой сверхплотного материала. Выброшенное вещество, насыщенное нейтронами, образует облако, где атомные ядра «захватывают» нейтроны быстрее, чем успевают распадаться. Так рождаются нестабильные тяжелые изотопы, которые со временем превращаются в стабильные элементы: золото, платину, уран. Распад этих изотопов сопровождается всплеском гамма-излучения. Именно этот «светящийся след» зафиксировали в 2004 году.

Чтобы уточнить вклад магнетаров в производство тяжелых элементов, нужны новые наблюдения. Задача непростая, ведь мощные вспышки случаются в Млечном Пути раз в несколько десятилетий, а во всей видимой Вселенной — примерно раз в год. Уловить момент помогут телескопы нового поколения, такие как NASA Compton Spectrometer and Imager, запуск которого запланирован на 2027 год.

Научная работа опубликована в The Astrophysical Journal Letters.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Автор публикует материалы по астрономии, археологии и палеонтологии. В текстах освещает современные открытия, теории и ключевые находки, представляя актуальные данные в научно-популярном формате.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
18 августа, 11:11
Денис Яковлев

За последнее десятилетие ученые создали несколько сложных систем «мозг — компьютер», которые позволяли преобразовывать мозговую активность людей, лишившихся способности говорить из-за различных заболеваний, в речь. Однако до сих пор удавалось расшифровать лишь небольшое количество слов. Теперь в США создали алгоритм, благодаря которому удалось распознать до 54 процентов «речи».

19 августа, 15:54
Елена Авдеева

К любопытным выводам привели наблюдения японских ученых за пестролицыми буревестниками. Оказалось, эти птицы испражняются в основном на лету, намеренно избегая такой возможности на поверхности воды. Очевидно, предположили исследователи, это облегчает движения в воздухе взрослым особям с добычей во рту.

19 августа, 10:44
Адель Романова

Ученые заново просмотрели старые записи о наблюдениях с помощью телескопа «Большое Ухо», который поймал знаменитый радиосигнал Wow!, и обнаружили данные о еще двух похожих событиях. Астрономы пришли к выводу, что это не могли быть обыкновенные земные радиопомехи и во всех трех случаях источник действительно располагался в глубоком космосе.

16 августа, 19:09
Адель Романова

Астрономы подсчитали, что с поверхности летящего по Солнечной системе межзвездного объекта 3I/ATLAS каждую секунду испаряется около 40 килограммов водяного льда. Такую сильную кометную активность он проявил, будучи в три с половиной раза дальше Земли от Солнца. По мнению ученых, это довольно необычно.

15 августа, 08:25
Любовь С.

Изображение блазара PKS 1424+240, полученное с помощью радиоинтерферометра VLBA, напомнило астрономам легендарное «Око Саурона» из «Властелина колец» — джет, пронизывающий кольцеобразное магнитное поле объекта, устремлен к нашей планете, а сам блазар может оказаться одним из наиболее ярких источников нейтрино в космосе.

18 августа, 11:11
Денис Яковлев

За последнее десятилетие ученые создали несколько сложных систем «мозг — компьютер», которые позволяли преобразовывать мозговую активность людей, лишившихся способности говорить из-за различных заболеваний, в речь. Однако до сих пор удавалось расшифровать лишь небольшое количество слов. Теперь в США создали алгоритм, благодаря которому удалось распознать до 54 процентов «речи».

25 июля, 07:47
Адель Романова

Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.

6 августа, 20:59
Татьяна Пичугина

Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.

22 июля, 14:44
ФизТех

Команда исследователей из Сколтеха, МФТИ, Института искусственного интеллекта AIRI и других научных центров разработала метод, позволяющий не просто отличать тексты, написанные человеком, от сгенерированных нейросетью, но и понимать, по каким именно признакам классификатор принимает решение о том, является ли текст генерацией или нет.  Анализируя внутренние состояния глубоких слоев языковой модели, ученые смогли выделить и интерпретировать численные признаки, отвечающие за стилистику, сложность и «степень уверенности» текста.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно