Хотите получать важные новости науки?
Подписаться
  • Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
14.07.2017
Редакция Naked Science
875

Нейросеть научили распознавать оружие на видео

Испанские ученые разработали компьютерный алгоритм, который способен с высокой точностью распознавать огнестрельное оружие на видео.

giphy_1-iloveimg-cropped_1
©Wikipedia / Автор: Никита Тарасов

На фоне роста глобальной террористической угрозы важным направлением развития систем видеонаблюдения выступает автоматический мониторинг потенциальных правонарушений. Существующие искусственные нейросети уже сравнительно хорошо справляются с распознаванием мимики и лиц, в том числе частично скрытых. Ранее исследователи также обучили компьютерные алгоритмы выявлять преступников по внешности и даже предсказывать злонамерения по активности мозга. Менее представлены технологии отслеживания определенных предметов, в частности оружия. Сейчас наличие последнего определяется в ходе досмотра и с помощью металлодетекторов. Однако надежность этих методов ограничена.

 

Так, проход через рамки металлодетектора невозможен для людей с кардиостимулятором, остальные при определенных условиях могут миновать проверку, используя обходной путь. Кроме того, подобные устройства не рассчитаны на поиск неметаллических предметов, например напечатанных на 3D-принтере. В качестве альтернативы специалисты из Гранадского университета создали компьютерный алгоритм для автоматического распознавания огнестрельного оружия независимо от его материала. Система предполагает интеграцию с видеонаблюдением: при возникновении соответствующего объекта в поле машинного зрения тот выделяется специальным тегом.

 

При разработке программы авторы использовали сверточную нейросеть на основе окон кандидатов (Region-based Convolutional Network, R-CNN). Такие алгоритмы применяются к задачам, связанным с быстрым трекингом конкретных визуальных образов: получаемое изображение R-CNN делит на регионы, за счет чего оценка местоположения и размеров заданного класса предметов требует всего одного считывания. Тренировка системы проводилась на более чем 1,3 миллиона снимков объектов из тысячи категорий ImageNet. На первом этапе стимулы объединили в четыре набора данных, которые включали в себя картинки из двух или более категорий. Наиболее эффективным оказалось обучение сразу по 102 из них.

 

Затем ученые сформировали пятый пул из 3000 фотографий, причем теперь все стимулы предполагали наличие руки, которая держит предмет. Помимо бытовых объектов (например, смартфонов) в целевой набор вошли изображения пистолетов в разных контекстах, в том числе кадры из фильмов. Обученную нейросеть исследователи испытали на семи видеофрагментах низкого качества: из кинокартин «Криминальное чтиво» (Pulp Fiction), «И целого мира мало» (James Bond: The World is Not Enough), «Миссия невыполнима: племя изгоев» (Impossible Mission: Rogue Nation), телесериала «Мистер Бин» (Mister Bin), а также реальных сценах с применением пистолетов. Точность определения оружия составила 96,6 процента.

 

Недостатком алгоритма, по словам авторов, выступает неспособность выявлять на видео оружие, скрытое, скажем, под одеждой. После совершенствования технологии она может помочь в предупреждении преступлений.

 

Статья опубликована на сервере препринтов arXiv.org.

 

На днях программисты показали алгоритм, который может реалистично адаптировать мимику изображенного человека к произвольному аудиоряду.

 

Сюжет о разработке / ©UGRmedia

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Позавчера, 15:19
ФизТех

Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.

Позавчера, 10:38
Evgenia Vavilova

Квантовые спиновые жидкости (КСЖ) обещают ученым развитие в областях квантовых вычислений и передачи энергии без потерь. В них магнитные моменты частиц теоретически не должны упорядочиваться даже при охлаждении до абсолютного нуля температур.

Позавчера, 17:26
Елена Авдеева

Состояние паралича, в которое впадают разные виды животных, хорошо известно и задокументировано. Обычно оно считается защитной реакцией в случае опасности, но никаких доказательств этому до сих пор нет. Особенно загадочным остается поведение обитателей океана, притворяющихся мертвыми. Ученые проверили существующие объяснения этого эффекта и сделали неожиданные выводы.

Позавчера, 15:19
ФизТех

Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.

Позавчера, 17:26
Елена Авдеева

Состояние паралича, в которое впадают разные виды животных, хорошо известно и задокументировано. Обычно оно считается защитной реакцией в случае опасности, но никаких доказательств этому до сих пор нет. Особенно загадочным остается поведение обитателей океана, притворяющихся мертвыми. Ученые проверили существующие объяснения этого эффекта и сделали неожиданные выводы.

Позавчера, 10:38
Evgenia Vavilova

Квантовые спиновые жидкости (КСЖ) обещают ученым развитие в областях квантовых вычислений и передачи энергии без потерь. В них магнитные моменты частиц теоретически не должны упорядочиваться даже при охлаждении до абсолютного нуля температур.

17 июня
Адель Романова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

Позавчера, 15:19
ФизТех

Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.

5 июня
Александр Березин

Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно