Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые смоделировали высоковольтный разряд перед сверхзвуковым самолетом
Ученые из МФТИ совместно с коллегами из Принстонского университета смоделировали взаимодействие высоковольтного стримерного разряда с ударной волной. Полученные данные помогут более точно моделировать условия вокруг сверхзвуковых самолетов и космических кораблей.
Такая волна образуется при разгоне летательного аппарата до скорости выше звуковой. Оказалось, когда разница плотностей газа по разные стороны волны превышает 20%, разряд не может ее преодолеть и начинает распространяться вдоль самой волны. Полученные данные помогут более точно моделировать условия вокруг сверхзвуковых самолетов и космических кораблей. Результаты работы опубликованы в журнале Plasma Sources Science and Technology.
Стримерные разряды в неоднородных газовых средах можно наблюдать в естественных условиях. В атмосфере Земли возникают разряды, которые распространяются от поверхности земли к ионосфере и в обратном направлении. Плотность воздуха на пути распространения таких разрядов изменяется в десятки и сотни раз. Благодаря этому в верхних слоях атмосферы рождаются возбужденные плазменные области в форме колец (эльфы) и струй (джеты и спрайты) (рисунок 1).

На относительно небольших высотах (до 10 километров) разряды в атмосфере Земли распространяются в виде стримерно-лидерных структур, которые приводят к возникновению хорошо известного молниевого разряда. Такие разряды могут вывести из строя электронику самолета или космического корабля. 90% ударов молний в эти объекты происходит из-за электрических пробоев, которые инициирует сам летательный аппарат.
Импульсные высоковольтные разряды часто используют в аэродинамике для управления воздушным потоком. При помощи быстрого нагрева небольшого объема газа можно управлять турбулизацией потока, отрывными и нестационарными течениями, а также конфигурацией ударных волн перед объектами, движущимися в атмосфере со сверхзвуковой скоростью. Неравновесное возбуждение газа импульсными разрядами позволяет эффективно управлять горением топливных смесей, которые могут включать газовые струи, аэрозоли или капли. Поэтому изучение взаимодействия разрядов с ударными волнами и другими неоднородностями газа имеет большое практическое значение.
В своей работе ученые рассмотрели случай, когда стримерный разряд пересекает ударную волну. Исследователи изучали взаимодействие плазмы с ударной волной как экспериментально (рисунок 2), так и с помощью численного моделирования одиночного пробоя. Он распространялся в 15-сантиметровом воздушном промежутке. Плотность модельного газа изменялась ступенчато от положительного электрода до отрицательного.

Отрицательным электродом была плоская пластина, а положительным — пластина с иглой в центре, на кончике которой инициировался разряд. Ученые поднимали напряжение на зазоре за 1 наносекунду до 100 кВ, а затем оставляли постоянным на этом уровне. Распространение волны ионизации газа в самосогласованном электрическом поле происходило за счет лавинной ионизации газа на фронте волны и фотоионизации перед ней. Ученые наблюдали за поведением такой волны ионизации при пересечении границ областей газа разной плотности.
Николай Александров, профессор МФТИ, главный научный сотрудник лаборатории импульсных плазменных систем МФТИ, комментирует: «Сделанное нами моделирование стримерного разряда в сильно неоднородном газе показало, что его характеристики резко меняются при достижении границы между участками с различной плотностью. В случае распространения плазмы из области с высокой плотностью газа в разреженную область, диаметр канала увеличивается, а электрическое поле в головке разряда уменьшается.
При движении в противоположном направлении разряд ведет себя иначе. Если разница параметров небольшая, разряд свободно проходит в газ с более высокой плотностью. Когда ее увеличение превышает 20%, движение разряда в первоначальном направлении блокируется. В результате он начинает развиваться в виде плазменного “блина”, “растекающегося” вдоль границы раздела областей газа».
Ученые также рассмотрели случай, когда волна ионизации проходит через неоднородности, в которых плотность газа меняется плавно. Результаты расчетов показывают, что наличие переходной части, длина которой значительно превышает диаметр стримерного разряда, позволяет ему плавно изменять форму и продолжать движение без резких изменений скорости и диаметра канала. Уменьшение длины градиента плотности до характерного диаметра плазменного канала приводит к значительным изменениям параметров разряда. Когда же толщина переходной области заметно меньше диаметра стримера, градиент плотности газа оказывает почти такое же влияние на распространение тока, как и разрыв бесконечно малой толщины.
Исследователи нашли условия, когда газообразная среда на короткое время перестает проводить ток в выделенном направлении. Разрыв в плотности среды «от разреженного газа к плотному» формирует своего рода «газодинамический диод» — удивительное физическое явление, когда газовый разряд может развиваться в одном направлении и не может в обратном.
«Газодинамический диод» останавливает развитие разряда в направлении электрического поля и перенаправляет плазменный канал вдоль границы раздела областей разной плотности, блокируя замыкание разрядного промежутка. В обратном направлении плазменный канал развивается лишь с незначительными изменениями скорости его распространения, в результате чего происходит перекрытие промежутка между электродами, приводящее к формированию проводящего канала между электродами.
Полученные результаты позволят лучше моделировать процессы управления газовыми потоками вокруг сверхзвуковых и гиперзвуковых летательных аппаратов.
В новом эксперименте исследователи из Финляндии проследили, как два типа питания повлияли на энергетический обмен веществ у псов породы стаффордширский бультерьер. Некоторые из биомаркеров, по которым судили об эффекте, в отношении собак применили впервые.
По замыслу исследователей, в будущем нетрадиционный способ доставки кислорода в организм, который они называют «энтеральной вентиляцией», может стать спасением для пациентов с дыхательной недостаточностью. Эксперимент подтвердил безопасность процедуры для людей, что приближает ученых к реализации идеи.
Стремительное развитие искусственного интеллекта (ИИ) стало одним из ключевых факторов, определяющих глобальную технологическую и экономическую повестку. Для России, стремящейся занять достойное место в числе лидеров цифровой трансформации, ИИ представляет собой одновременно и огромную возможность, и серьезный вызов. Вопрос о том, является ли он двигателем прогресса или источником новых угроз, не имеет однозначного ответа, поскольку обе эти ипостаси тесно переплетены в современной реальности.
В густой оранжевой дымке Титана, где температура опускается до минус 180 градусов Цельсия, происходят невозможные по земным меркам химические реакции: молекула циановодорода (HCN), рожденная в атмосфере из азота, метана и этана, могла сформировать кристаллы, объединяющие вещества противоположной природы.
Насколько счастливым нужно быть человеку, чтобы это начало благоприятно сказываться на продолжительности жизни? Ученые определили минимальный уровень субъективного ощущения благополучия, или счастья, преодолев который, оно становится фактором, позитивно влияющим на здоровье населения страны.
Первый официальный документ, описывающий принцип действий в случае возможного контакта с внеземной цивилизацией, был принят Международной академией астронавтики (IAA) в 1989 году. С тех пор декларацию неоднократно пересматривали, а ее обновленную версию, адаптированную под реалии XXI века, ученые разработали совместно с участниками проекта по поиску инопланетян SETI.
Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.
Археологи Института истории материальной культуры РАН (ИИМК РАН), при поддержке фонда «История отечества» в ходе раскопок обнаружили на всемирно известной стоянке каменного века Костенки-17 в Воронежской области редчайшие украшения из зубов песца и окаменелой раковины, а также уникальный для этого времени нуклеус из бивня мамонта для снятия заготовок.
Экспедиционное судно «Эндьюранс» более века называли самым прочным деревянным судном, когда-либо построенным человеком. Но находка, сделанная на дне моря, и изучение старых писем раскрыли неприятную правду. Легендарный «Эндьюранс» Шеклтона вовсе не был непобедимым левиафаном. Напротив, он имел фатальные недостатки, а капитан знал об этом еще до того, как ушел в роковое плавание к берегам Антарктиды.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно

Последние комментарии