Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Физики впервые экспериментально пронаблюдали топологические дефекты в стекле
Международная команда физиков обнаружила способ экспериментально находить топологические дефекты в слабоупорядоченных материалах. Их метод поможет глубже понять свойства многочисленных аморфных систем.
Аморфный материал — это твердое вещество, молекулы и атомы которого образуют хаотические структуры, то есть не занимают строго определенные позиции в пространстве. Аморфное состояние — самая распространенная форма организации видимого вещества во Вселенной. Биологические клетки, стекла, полимерные материалы, клей и гели находятся в аморфном состоянии.
«Противоположны» таким объектам по строению кристаллические материалы. Их внутренняя организационная структура настолько упорядочена, что ученые могут описать кристалл математически, потому что он состоит из одинаковых, бесконечно повторяющихся элементарных ячеек. В целом это действительно так, однако при внимательном рассмотрении кристаллы, особенно природные, полны дефектов. Нарушения внутренней структуры кристаллов во многом определяют их свойства: цвет, способность к деформации, температуру плавления и способ распространения электрического тока.
Топологические дефекты особенно важны для ученых. Вокруг точки топологического дефекта нарушение структуры кристалла таково, что некоторые физические параметры материала сильно изменяют значение после полного обхода вокруг дефекта.
В аморфных системах, таких как стекло или случайная сеть нейронных связей, топологические дефекты впервые обнаружили только в 2021 году. Но до сих пор ученые не могли получить доказательства существования топологических дефектов в реальных аморфных материалах.
Международная команда физиков смогла идентифицировать топологические дефекты в аморфном коллоидном стекле, созданном в лаборатории путем случайного объединения магнитных коллоидных частиц. Исследователи нашли дефекты благодаря специальным методам численного анализа, примененным к обработке экспериментальных данных видеомикроскопии. Результаты опубликованы в журнале Nature Communications.
Аморфное вещество в эксперименте состояло из полистирола и наночастиц оксида железа, стабилизированных в додецилсульфате натрия (sodium dodecyl sulfate), помещенных на атомарно плоскую поверхность. Ученые помещали их в магнитное поле и снимали происходящее в аморфном веществе на камеру, данные с которой стали основой для анализа и поиска дефектов.
По мнению исследователей, экспериментальная демонстрация существования топологических дефектов в неупорядоченных системах — поворотный момент в физике конденсированного состояния. Теперь ученые смогут точно контролировать физические свойства аморфных материалов и систем. Изучение аморфных систем позволит лучше понять множество сложноорганизованных объектов, от нервных систем живых существ до структуры космоса.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
У побережья Канады морские биологи стали свидетелями необычного случая. Косатки и дельфины объединили свои силы, чтобы вместе охотиться на тихоокеанского лосося. Они погружались в темные глубины, а после удачной охоты делились пищей. Это первое задокументированное охотничье сотрудничество между двумя видами морских млекопитающих.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно

Последние комментарии