Насколько быстро можно передавать информацию внутри нанофотонных микропроцессоров? — Naked Science
14 минут
ФизТех

Насколько быстро можно передавать информацию внутри нанофотонных микропроцессоров?

Создана теория, позволяющая точно предсказывать шумы, возникающие при усилении фотонных и плазмонных сигналов в наноразмерных схемах.

Насколько быстро можно передавать информацию внутри нанофотонных микропроцессоров?
Насколько быстро можно передавать информацию внутри нанофотонных микропроцессоров?

Исследователи из Лаборатории нанооптики и плазмоники Центра наноразмерной оптоэлектроники МФТИ создали теорию, позволяющую точно предсказывать шумы, возникающие при усилении фотонных и плазмонных сигналов в наноразмерных схемах. В статье, опубликованной в журнале Physical Review Applied, учёные представили алгоритмы расчёта максимальной скорости передачи данных внутри оптоэлектронных микропроцессоров ближайшего будущего и нашли фундаментальные ограничения на пропускную способность нанофотонных интерфейсов.

Поверхностные плазмон-поляритоны представляют собой коллективные колебания электронов на поверхности металла вместе с окружающим их электромагнитным полем. Упрощённо поверхностный плазмон можно описать как «сплюснутый» квант света, и именно это обуславливает перспективность плазмонных устройств: их размеры не сильно превосходят размеры наноэлектронных компонентов, но с их помощью можно передавать куда больше информации, чем по электрическим проводам. Даже частичная замена металлических соединений на чипе на плазмонные (нанофотонные) позволит существенно повысить производительность микропроцессоров.

Проблемой является затухание сигнала — поверхностные плазмоны могут распространяться лишь по активным волноводам, которые не просто направляют сигнал от источника к приёмнику, но и подпитывают его за счёт энергии проходящего через устройство электрического тока. Добавление энергии извне компенсирует потери, и сигнал так же свободно распространяется по такому волноводу, как идут стрелки кварцевых часов до тех пор, пока в них не сядет батарейка.

С усилением сигналов и компенсацией потерь связана фундаментальная проблема. Любой усилитель не только увеличивает амплитуду всего, что поступает на его вход, но и сам добавляет помехи. Такие помехи в физике называют шумом. Законы термодинамики указывают на то, что шум той или иной природы будет неизбежно возникать в любой системе: сделать устройство, в котором шумов нет, принципиально невозможно. Как правило, искажения исходного сигнала определяются именно шумом, что фундаментально ограничивает скорость передачи информации по различным каналам связи или вызывает ошибки при её приёме. А чтобы повысить скорость обмена данными, надо улучшить соотношение сигнал-шум. Важность этого соотношения легко поймёт каждый, кто пробовал общаться на оживлённой улице или настраивать радиоприёмник вдали от города.

«Шумы играют ключевую роль чуть ли не в половине всех бытовых устройств: начиная с мобильных телефонов и телевизоров и заканчивая оптоволоконными сетями интернета. Усиление сигнала неизбежно приводит к ухудшению соотношения сигнал-шум. Причём чем больше усиление или, как в нашем случае, компенсируемые потери, тем больше шума следует ожидать на выходе. В плазмонных волноводах с усилением это проявляется наиболее ярко», — комментирует актуальность проблемы Дмитрий Федянин.

В новой статье, представленной Дмитрием Федяниным и Андреем Вишневым на страницах журнала Physical Review Applied, речь идёт об особом виде шума, а именно о фотонном шуме, возникающем при усилении плазмонных сигналов в полупроводниковых устройствах. Основным его источником является так называемое спонтанное излучение. Дополнительная энергия поступает в сигнал при переходах электронов из состояний с большей энергией в состояния с меньшей: разница в энергии этих состояний излучается в виде световых квантов, и такое излучение может быть как вынужденным, так и спонтанным. Вынужденное излучение усиливает сигнал, а вот спонтанное даёт шум, причём в виде излучения с разной энергией квантов, то есть в широком спектре. Шум проявляется как случайные колебания интенсивности излучения, возникающие в результате биений — наложения отдельных частотных компонент сигнала и спонтанной эмиссии. При этом чем больше усиление, тем сильнее шум, тем шире спектры вынужденной и спонтанной эмиссии и тем менее правомерны подходы квантовой оптики, разработанные для описания отдельных атомов. Большое усиление на наномасштабах в активных плазмонных волноводах заставило исследователей решать задачу фактически с чистого листа.

«Нам пришлось объединить три области, которые крайне редко одновременно пересекаются друг с другом в научном мире: квантовую оптику, физику полупроводников и оптоэлектонику. Мы разработали подход к описанию фотонного шума в системах со средой, усиливающей в широком спектральном диапазоне. Несмотря на то, что изначально теория создавалась для плазмонных волноводов, наш подход можно применять для любых оптических усилителей и подобных им систем», — объясняет Дмитрий Федянин.

Шум ведёт к ошибкам при передаче данных, что сильно снижает фактическую скорость передачи информации из-за необходимости использовать алгоритмы коррекции ошибок. Коррекция ошибок, помимо уменьшения скорости, требует наличия в чипе дополнительных компонентов, которые бы эту коррекцию реализовывали на аппаратном уровне, что значительно усложняет как проектирование, так и производство новых устройств.

«Зная мощность шума в нанофотонном канале связи и спектральные характеристики шума, можно вычислить, с какой максимальной скоростью возможно передавать информацию по такому каналу. Кроме того, мы можем определить, как уменьшить шум, выбирая определённые режимы работы устройства и используя электронную или оптическую фильтрацию», — продолжает Андрей Вишневый.

Новая теория позволяет, в частности, понять, возможно ли в будущем создание принципиально нового класса устройств — плазмонно-электронных чипов. В таких чипах компактные плазмонные компоненты должны применяться для передачи данных между вычислительными ядрами и регистрами процессора на сверхвысоких скоростях. Ранее считалось, что основным препятствием на этом пути является ослабление сигнала; однако, согласно работе исследователей из МФТИ, после компенсации потерь на первый план выходит проблема шумов. Сигнал, в принципе, может просто утонуть в шуме спонтанного излучения, что сделает чип абсолютно бесполезным.

Проведённые исследователями расчёты показывают, что в активном плазмонном волноводе размером лишь 200×200 нанометров можно эффективно передавать сигнал на расстояние до 5 миллиметров. Это расстояние может показаться очень малым по бытовым меркам, но оно является типичным для современных микропроцессоров. При этом скорость передачи информации будет превышать 10 Гбит/с на один спектральный канал (канал передачи информации, реализованный на фиксированной длине волны), а таких спектральных каналов в одном наноразмерном волноводе умещается до нескольких десятков при использовании технологии спектрального уплотнения каналов, которая применяется во всех оптических линиях коммуникации, включая широкополосный интернет. Для сравнения: максимальная скорость передачи информации по электрическому соединению тех же размеров (т. е. по медной дорожке на чипе) составляет всего 20 Мбит/с, то есть более чем в 500 раз меньше!

Учёные подробно исследовали, как меняются характеристики шума и его мощность в зависимости от параметров плазмонного волновода с компенсацией потерь, а также показали, как можно понизить уровень шума для достижения максимальной пропускной способности такого нанофотонного интерфейса. Они продемонстрировали сочетание малых размеров, малого числа ошибок при высокой скорости передачи данных и достаточно высокой энергоэффективности в одном устройстве, что может уже в ближайшее десятилетие обеспечить «плазмонный прорыв» в микроэлектронике.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
ФизТех
201 статей
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Позавчера, 19:03
7 минут
Мария Азарова

Попадание патогена в эпителий слизистой дыхательных путей и захват вирусом бокаловидных клеток приводит к нарушению слизистого барьера. Из-за уменьшения количества муцина снижается не только обонятельная чувствительность, но и возникают неприятные ощущения в носу и рту, в том числе сухость.

Вчера, 10:22
5 минут
ПНИПУ

Ученые Пермского Политеха и Томского политехнического университета разработали уникальный сверхпрочный материал. Из него можно создать укрепляющие плиты для корпуса автомобилей – своеобразный «бронежилет». Также его можно использовать при отделке фасадов зданий и в производстве тротуарной плитки для придания им большей прочности. В отличие от аналогов, разработку впервые создали без дефицитных, дорогостоящих и токсичных материалов.

Вчера, 20:22
6 минут
Василий Парфенов

Печальные новости для любителей фантастики и уфологов: ученые снова понизили шансы на встречу с инопланетянами. Такие выводы сделали после анализа основных эволюционных переходов и времени, в течение которого на планетах могут существовать благоприятные для жизни условия.

Позавчера, 19:03
7 минут
Мария Азарова

Попадание патогена в эпителий слизистой дыхательных путей и захват вирусом бокаловидных клеток приводит к нарушению слизистого барьера. Из-за уменьшения количества муцина снижается не только обонятельная чувствительность, но и возникают неприятные ощущения в носу и рту, в том числе сухость.

Позавчера, 14:43
7 минут
Василий Парфенов

Фанаты эпической киноленты «Космическая одиссея 2001 года» могут ликовать: на Земле нашли объект, похожий на показанные в фильме монолиты. Необычный металлический артефакт обнаружили сотрудники Департамента общественной безопасности штата Юта во время рутинного облета территорий.

22 ноября
24 минуты
Александр Березин

Планеты вокруг нашего Солнца расположены совсем не так, как в других системах. И это имеет крайне необычные практические последствия: расчеты показывают, что вокруг нашей звезды должны вращаться две потенциально обитаемые планеты, а не одна, как сейчас. Одна из них куда-то бесследно исчезла – и это еще в лучшем случае. Рассказываем, почему так получилось и кто конкретно в этом виноват.

14 ноября
34 минуты
Василий Парфенов

На вопрос, кто проживает на дне океана, люди отвечают по-разному. Дети и некоторые взрослые скажут: Губка Боб Квадратные Штаны. Фанаты Лавкрафта благоговейно, но с огоньком в глазах пробормочут нечто вроде «Ктулху фхтагн». А подводники и океанологи задумчиво посмотрят на вопрошающего и, если повезет, расскажут много интересного. Про квакеров, «биоуток», «блуп» и еще Посейдон его знает какие аномальные явления подводного мира.

2 ноября
10 минут
Василий Парфенов

Совсем недавно первые комплекты оборудования Starlink начали поступать простым пользователям, и они уже активно делятся опытом использования. Бета-тестирование под девизом «Лучше, чем ничего» позволяет оценить возможности готовой менее чем на 10% спутниковой группировки. И они впечатляют!

Позавчера, 19:03
7 минут
Мария Азарова

Попадание патогена в эпителий слизистой дыхательных путей и захват вирусом бокаловидных клеток приводит к нарушению слизистого барьера. Из-за уменьшения количества муцина снижается не только обонятельная чувствительность, но и возникают неприятные ощущения в носу и рту, в том числе сухость.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Лучшие материалы
Предстоящие мероприятия
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: