Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Искусственный интеллект научился «видеть» так же, как и человек
Инженеры Калифорнийского университета в Лос-Анджелесе (UCLA) и Стэнфордского университета продемонстрировали компьютерную систему, способную обнаруживать и идентифицировать объекты реального мира, которые она «видит», на основе метода визуального обучения, используемого людьми.
Новая система считается шагом вперед в технологии, называемой «компьютерное зрение», которая позволяет компьютерам считывать и идентифицировать визуальные образы. Это может приблизить нас к созданию общих систем искусственного интеллекта — самообучаемых компьютеров, которые способны рассуждать и принимать самостоятельные решения. Современные системы компьютерного зрения ИИ с каждым днем становятся все более мощными и эффективными, однако до сих пор зависят от конкретной задачи. Это означает, что их способность определять то, что они видят, ограничена степенью их обучения и программирования людьми.
Даже лучшие на сегодня системы компьютерного зрения не могут создать полную картину объекта на основе только определенных его частей, поэтому ее можно обмануть, если продемонстрировать объект в незнакомой роботу обстановке. Инженеры стремятся создать такие компьютерные системы, которые бы не имели этого недостатка, подобно тому, как люди способны узнать собаку, даже если она спряталась за стулом, из-за которого видны только лапы и хвост. С помощью интуиции человек легко поймет, где находится голова собаки, а где — остальная часть ее тела, однако эта способность все еще недоступна большинству систем ИИ.
Современные системы компьютерного зрения не предназначены для самостоятельного обучения, поэтому их программируют путем демонстрации тысяч изображений объектов, которые они должны идентифицировать. Кроме того, компьютеры не могут интуитивно определить, что изображено на фотографии: системы на основе ИИ не составляют внутренний образ знакомых объектов, как это делают люди. Новый метод, описанный в журнале Proceedings of the National Academy of Sciences, рассказывает, как можно решить эти проблемы.
«К счастью, интернет предоставляет две вещи, которые помогают мозговой системе компьютерного зрения обучаться тем же способом, что и люди. Во-первых, это наличие множества изображений и видеороликов, на которых показаны объекты одного и того же типа. Во-вторых, эти объекты видны с разных точек зрения — скрытые, с высоты птичьего полета, с близкого расстояния — и размещены в различных условиях», — утверждает профессор Калифорнийского университета и руководитель исследования Ввани Ройховдхури (Vwani Roychowdhury).
Начиная с младенчества мы узнаем о каком-то предмете, так как видим много его вариаций в различных контекстах. Такое контекстное обучение считается ключевой особенностью нашего мозга: оно помогает нам создавать надежные модели объектов, которые составляют часть интегрированного мировоззрения, где все функционально связано.
Это понимание помогло инженерам добиться результата: они успешно протестировали систему с помощью порядка 9000 картинок, на каждой из которых были изображены люди и другие объекты. Платформа построила детальную модель человеческого тела без внешнего наведения и маркировки изображений. Инженеры провели аналогичные испытания, используя изображения мотоциклов, автомобилей и самолетов.
Во всех случаях их система работала лучше или по крайней мере так же, как традиционные системы компьютерного зрения с многолетним обучением, что вселяет надежду на дальнейший прогресс.
В архивах английского поместья столетиями пылилась ничем не примечательная книга учета XVI века. Никто не подозревал, что внутри ее переплета скрываются фрагменты пергамента с историями, которые переписывали монахи семь веков назад. Тайна раскрылась, когда архивариус заметил странные символы на обложке. Так началось расследование, объединившее разных ученых. Исследователи три года пытались прочитать текст, не прикасаясь к нему. Теперь они представили результат своего труда — мир получил два ранее неизвестных эпизода о волшебнике Мерлине, короле Артуре и рыцаре Гавейне.
Два ключевых события сыграли решающую роль в формировании генетического профиля современных европейских народов. Первое связано с приходом ранних фермеров из Анатолии примерно восемь тысяч лет назад, второе — масштабная миграция на запад носителей ямной степной культуры, начавшаяся пять тысяч лет назад. Однако ученые видят множество отличий от общей картины в разных регионах. В новой работе они проанализировали ДНК древних жителей самого северо-запада Европы и обнаружили более тесную связь с охотниками-собирателями, чем где бы то ни было.
Американские зоологи задались вопросом: как можно улучшить условия содержания птиц в неволе? Они добавили в лабораторные клетки подстилку из искусственной травы, чтобы птица могла питаться в знакомой среде, а не из стандартной миски. Опыты проводили на воробьях — исследователи несколько недель замеряли их реакцию на стресс. Результаты показали, что искусственная трава может улучшить состояние птиц в неволе, но переселять их потом не стоит.
Ученые из Сколтеха исследовали разнообразие молекул, которые могут образовываться из атомов кислорода и углерода. Помимо широко известных углекислого и угарного газов, моделирование обнаружило две сотни экзотических, но относительно стабильных соединений этих двух элементов, многие из которых не были описаны ранее. Этот класс веществ представляет интерес для исследований космоса, аккумуляторных технологий, биохимии и — неожиданным образом — для разработки промышленной взрывчатки и ракетного топлива. Как оказалось, некоторые из открытых веществ при распаде будут высвобождать более 75 процентов взрывной энергии тротила.
Antares и Exlabs подписали соглашения о сотрудничестве в разработке космического зонда с ядерным двигателем. В ее рамках разработчики планируют вывести реактор в космос уже в 2020-х годах — впервые в XXI веке.
В архивах английского поместья столетиями пылилась ничем не примечательная книга учета XVI века. Никто не подозревал, что внутри ее переплета скрываются фрагменты пергамента с историями, которые переписывали монахи семь веков назад. Тайна раскрылась, когда архивариус заметил странные символы на обложке. Так началось расследование, объединившее разных ученых. Исследователи три года пытались прочитать текст, не прикасаясь к нему. Теперь они представили результат своего труда — мир получил два ранее неизвестных эпизода о волшебнике Мерлине, короле Артуре и рыцаре Гавейне.
Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).
В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.
Масштабный анализ геномов показал, что вид Homo sapiens возник в результате смешения двух древних популяций. Они разделились полтора миллиона лет назад, а затем воссоединились до расселения по миру.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии