• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
27 февраля
НИУ ВШЭ
239

Возникновение турбулентности смоделировали на уровне атомов

4.4

Ученые из НИУ ВШЭ и МФТИ разработали суперкомпьютерный метод моделирования жидкости на атомных масштабах, позволяющий описывать возникновение турбулентных режимов течения. Исследователи рассчитали на суперкомпьютерах HARISMa и «Десмос» течение жидкости, состоящей из нескольких сотен миллионов атомов. Метод уже применяется для моделирования течения жидкометаллического свинцового теплоносителя в ядерном реакторе.

Возникновение турбулентности смоделировали на уровне атомов
Возникновение турбулентности смоделировали на уровне атомов / © Getty images

Работа опубликована в The International Journal of High Performance Computing Applications. В компьютерном моделировании жидкость обычно описывают как сплошную среду, лишенную дискретности, а ее течение определяют с помощью численного решения дифференциальных уравнений Навье — Стокса. Такие модели называются континуальными, и в них не описывается поведение отдельных атомов и молекул жидкости. В прикладных задачах ученых очень часто интересует не спокойное — ламинарное, а турбулентное течение, когда потоки жидкости образуют вихри разного размера, меняющиеся во времени и пространстве стохастически.

В 1940-е годы советский математик академик Андрей Николаевич Колмогоров создал теорию эволюции вихрей в турбулентных потоках, показав, что большие вихри измельчаются в маленькие вплоть до десятков и сотен нанометров. При таких размерах (на колмогоровском масштабе длины) континуальные методы не работают, и нужно моделировать поведение отдельных атомов и молекул, численно решая их уравнения движения. Переход к подобному дискретному описанию может быть критически полезен для некоторых специальных случаев. Например, так можно изучать диффузию и образование кластеров частиц в турбулентном потоке. Конечно, эти процессы можно рассматривать в континуальном приближении, однако корректность используемых допущений можно проверить только с помощью атомистического моделирования.

Для изучения зарождения турбулентности ученые из НИУ ВШЭ и МФТИ разработали концепцию, позволяющую наблюдать быстрое течение жидкости, огибающей препятствия, на микрометровых масштабах. Ученые придумали способ, как удержать поток жидкости в ограниченных размерах, затем реализовали его в двух программах для молекулярного моделирования. Также исследователи проанализировали производительность суперкомпьютеров, на которых проводились расчеты, и пути ее оптимизации.

«Мы получили естественный поток жидкости с завихрениями, которые возникают сами собой в результате обтекания препятствия на масштабах в сотни миллионов атомов, чего до нас еще не делали. Цель нашего нового метода — получать данные для особых случаев, таких как диффузия, течение возле стенок, чтобы физически правильно сопрягать атомный и континуальный масштаб в тех областях моделирования, где эта смычка является критически важной», — комментирует руководитель научной группы, ведущий научный сотрудник Международной лаборатории суперкомпьютерного атомистического моделирования и многомасштабного анализа НИУ ВШЭ, заведующий лабораторией суперкомпьютерных методов в физике конденсированного состояния МФТИ Владимир Стегайлов.

Моделируемая система представляла собой плоский квазидвумерный параллелепипед, внутри которого находилось цилиндрическое препятствие и от нескольких миллионов до нескольких сотен миллионов атомов жидкости. К тепловым скоростям атомов добавлялась заданная скорость потока, и если она была достаточно большой, то после огибания цилиндра спонтанно формировались турбулентные вихри. Так ученые смогли в естественных условиях промоделировать возникновение предтурбулентного режима течения, не накладывая на движение жидкости иных специальных условий.

Сложность моделирования состояла в том, что частицы в процессе движения должны покидать пределы параллелепипеда. Обычно в атомистическом моделировании применяют периодические граничные условия, когда атомы, условно покинувшие систему справа, на следующем шаге расчетов искусственно возвращаются в систему слева с той же скоростью и направлением движения. Таким образом, система остается замкнутой.

Этот метод наиболее вычислительно простой. В задаче с вихрями физикам пришлось придумать такие периодические условия, чтобы при переходе границы системы течение переставало быть турбулентным, иначе после возвращения атомов в параллелепипед налетающая на препятствие жидкость уже была бы турбулентной, что нарушило бы постановку задачи. Ученые предложили расположить возле правой границы системы виртуальные плоскости, после пересечения которых скорость частиц перерассчитывалась, течение становилось нормальным (ламинарным), а значит, возвращение атомов не нарушало условие ламинарности натекающего потока.

После теоретического обоснования предложенных граничных условий ученые внедрили их в широко используемые программы для молекулярного моделирования LAMMPS и OpenMM и рассчитали течение жидкости на суперкомпьютерах с графическими ускорителями. Отдельное внимание ученые уделили сохранению максимальной производительности вычислений, поскольку в системах из миллионов атомов, для которых рассчитывается несколько миллионов временных шагов, миллисекундное ускорение на одном вычислительном шаге приводит к экономии нескольких дней и даже недель работы суперкомпьютера.

Студент магистратуры МИЭМ НИУ ВШЭ Владислав Галигеров, один из двух главных авторов статьи, добавляет: «Сейчас все больше развиваются инструменты для глубокого анализа производительности, например инструмент анализа параллельных программ Score-P, который мы использовали в данной работе. Очень важно выработать стандарты работы с такими инструментами, чтобы разработчики программ для суперкомпьютеров, внося изменения в существующий код или написав что-то новое, могли провести анализ в соответствии с ними и оценить, насколько эффективным будет их приложение на различных архитектурах суперкомпьютеров, включая те, к которым они не имеют доступа». Для анализа в работе использовали суперкомпьютер «Десмос» Объединенного института высоких температур РАН и суперкомпьютер HARISMa НИУ ВШЭ. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Национальный исследовательский университет «Высшая школа экономики» — один из крупнейших и самых востребованных вузов России. В университете учится 54 тысячи студентов и работает почти 4,5 тысячи учёных и преподавателей. НИУ ВШЭ ведёт фундаментальные и прикладные исследования в области социально-экономических, гуманитарных, юридических, инженерных, компьютерных, физико-математических наук, а также креативных индустрий. В университете действуют 47 центров превосходства, или международных лабораторий. Вышка объединяет ведущих мировых исследователей в области изучения мозга, нейротехнологий, биоинформатики и искусственного интеллекта. Университет входит в первую группу программы «Приоритет-2030» в направлении «Исследовательское лидерство». Кампусы НИУ ВШЭ расположены в четырех городах — Москве, Санкт-Петербурге, Нижнем Новгороде и Перми, а также в цифровом пространстве — «Вышка Онлайн».
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Вчера, 18:19
Редакция Naked Science

Последние полвека темпы развития науки снижаются. В быту это пока незаметно, потому что от фундаментального открытия до его реализации в технике проходят десятки лет. Но замедление длится слишком долго, то есть вскоре мы столкнемся с замедлением развития техники в целом. Naked Science решил дать перевод видео физика и популяризатора Сабины Хоссенфельдер на эту тему. Что же не так с современной наукой и можно ли что-то исправить?

Позавчера, 12:52
Юлия Позднякова

Ольга Ивановна Лаврик — заведующая лабораторией биоорганической химии ферментов Института химической биологии и фундаментальной медицины СО РАН, академик РАН. Лаборатория Ольги Ивановны занимается исследованием системы починки генов в клетке — процессами репарации ДНК. Ученые хотят досконально понять, как это работает, чтобы на основе знаний создать новые препараты для лечения онкологических и нейродегенеративных заболеваний. Интересные данные и даже подлеченные мыши уже есть, однако в будущее российской науки Ольга Ивановна смотрит с некоторым пессимизмом.

Вчера, 11:06
Илья Ферапонтов

За что иностранцы уважают российских астрономов, почему интересно жить в горах рядом с обсерваторией, зачем астроному нужно уметь обращаться с паяльником и чем интересны галактики с полярными кольцами? Об этих и других вопросах мы побеседовали с Алексеем Моисеевым, заведующим лабораторией спектроскопии и фотометрии внегалактических объектов Специальной астрофизической обсерватории (САО) РАН.

25 ноября
Полина Меньшова

Многие одинокие люди считают, что окружающие не разделяют их взглядов. Психологи из США решили проверить, так ли это на самом деле, и обнаружили общую особенность у людей с недостаточным количеством социальных связей.

28 ноября
Елизавета Александрова

Обсерватории постоянно улавливают «мигающие» радиосигналы из глубин Вселенной. Чаще всего их источниками оказываются нейтронные звезды, которые за это и назвали пульсарами. Но к недавно обнаруженному источнику GLEAM-X J0704-37 они, по мнению астрономов, отношения не имеют.

25 ноября
МГПУ

Профессор Московского городского педагогического университета, доктор психологических наук Борис Рыжов описал феномен любви как сложную систему взаимосвязанных мотиваций, которые фиксируются на одном объекте, создавая прочную эмоциональную связь. Это объяснение помогает понять, почему любовь способна настолько глубоко влиять на все аспекты жизни человека и как происходит формирование устойчивой привязанности.

16 ноября
Evgenia

Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.

25 ноября
Полина Меньшова

Многие одинокие люди считают, что окружающие не разделяют их взглядов. Психологи из США решили проверить, так ли это на самом деле, и обнаружили общую особенность у людей с недостаточным количеством социальных связей.

28 ноября
Елизавета Александрова

Обсерватории постоянно улавливают «мигающие» радиосигналы из глубин Вселенной. Чаще всего их источниками оказываются нейтронные звезды, которые за это и назвали пульсарами. Но к недавно обнаруженному источнику GLEAM-X J0704-37 они, по мнению астрономов, отношения не имеют.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно