Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В Пермском Политехе разработали сенсорный экран, реагирующий на звук касания
Обычные пульты управления с кнопками плохо работают в агрессивной среде, пыль и влага проникают в щели. При этом кнопки часто ломаются. А ведь сенсорные экраны стали основным интерфейсом ввода информации для мобильных телефонов, планшетов, ПК общего назначения и терминалов. Однако, как правило, они сделаны из хрупких материалов и имеют много ограничений (должны быть плоскими и однородными). Из-за этого устройства становятся менее универсальными и надежными. Было бы удобно иметь сенсорный экран из прочного металла или пластика. Ученые Пермского Политеха разработали новый сенсорный экран, который определяет точку касания по звуку. По поверхности распространяются звуковые волны, и по времени распространения волны можно точно определить место касания. Поверхность при этом может быть любой формы и размера, сделана из любого материала, а кнопки — просто нарисованы. Система, по словам ученых, долговечная, вандалоустойчивая и точная.
Исследование опубликовано в журнале «Вестник ПНИПУ. Электротехника, информационные технологии, система управления». Исследование выполнено при поддержке гранта «Умник-ИИ 2021».
«При касании пользователем экрана образуется ударная волна, которая распространяется по сенсорной панели. Микрофоны, расположенные в ее внутренней части, регистрируют звуковые колебания, на разные микрофоны звук приходит в свое время. Далее их показания передаются в микроконтроллер и там обрабатываются – рассчитываются относительная временная задержка и сила сигнала, по которым можно вычислить расстояние и место касания пользователя», – объясняет ассистент кафедры «Автоматика и телемеханика» Пермского Политеха Алексей Козин.
В ходе исследования ученые смоделировали сенсорное акустическое устройство. Математическая модель определяет распространение звука в твердых телах и его локализацию с учетом временной задержки и громкости.
Политехники создали модель в программном комплексе в виде полой металлической конструкции (20 сантиметров в ширину, 30 — в длину и 10 — в высоту), к внутренней части стенок прикреплены три микрофона. При моделировании ученые использовали безэховую среду и одиночное касание по центру. Были определены силы сигнала и пиковое значение волн.
Чтобы проверить возможность реализации системы на практике ученые провели эксперимент, для которого использовали алюминиевую коробку. Координаты микрофонов и касания полностью соответствуют модели, примерная длительность касания 85 мс, а его пиковое значение происходило в момент времени 900 мкс. В результате первым звуковую волну зарегистрировал микрофон №3 (ближайший к касанию), а микрофон №1 – последним. Временная задержка между третьим и вторым микрофоном 109,4, а между третьим и первым – 201,6.
«Акустический сенсор получается очень дешевым и позволяет делать экран из любого материала – из куска металла и даже из деревянной доски. Испытания на вибростенде показали высокую помехоустойчивость нашего сенсора. Прямо сейчас мы со своим проектом прошли в финал конкурса-акселератора инновационных проектов «Большая разведка», в рамках которого нам предложили сотрудничество с несколькими предприятиями, занимающихся производством пультов управления. Оказалось, что наиболее востребовано использование нашего сенсорного экрана в шахтном оборудовании, где большая запыленность воздуха приводит к очень быстрому износу устройств», – рассказывает аспирант кафедры «Информационные технологии и автоматизированные системы» ПНИПУ Анна Якубчик.
Полученные результаты эксперимента соответствуют всем расчетным и компьютерным значениям. Разработанная учеными система позволяет точно определять место контакта пользователя с сенсорным экраном через звуковые волны, следующие после касания. Технология долговечная, вандалоустойчивая и не подвержена изменениям погодных условий. Поэтому ее использование на сенсорных устройствах в уличной и неблагоприятной среде эффективно и перспективно.
К любопытным выводам привели наблюдения японских ученых за пестролицыми буревестниками. Оказалось, эти птицы испражняются в основном на лету, намеренно избегая такой возможности на поверхности воды. Очевидно, предположили исследователи, это облегчает движения в воздухе взрослым особям с добычей во рту.
Люди, которые были на грани смерти, затем иногда рассказывают, как мчались навстречу необычайно яркому свету или видели всю свою жизнь, проносящуюся перед глазами. Эти переживания на первый взгляд напоминают галлюцинации под воздействием некоторых психоделиков. Но есть и существенные различия, обнаружили исследователи из Великобритании.
Исследователям квантовых компьютеров обычно приходится выбирать: сделать стабильный кубит или быстрый. Международная группа ученых нашла способ создать кубиты, избавленные от этой необходимости.
Астрономы подсчитали, что с поверхности летящего по Солнечной системе межзвездного объекта 3I/ATLAS каждую секунду испаряется около 40 килограммов водяного льда. Такую сильную кометную активность он проявил, будучи в три с половиной раза дальше Земли от Солнца. По мнению ученых, это довольно необычно.
За последнее десятилетие ученые создали несколько сложных систем «мозг — компьютер», которые позволяли преобразовывать мозговую активность людей, лишившихся способности говорить из-за различных заболеваний, в речь. Однако до сих пор удавалось расшифровать лишь небольшое количество слов. Теперь в США создали алгоритм, благодаря которому удалось распознать до 54 процентов «речи».
Изображение блазара PKS 1424+240, полученное с помощью радиоинтерферометра VLBA, напомнило астрономам легендарное «Око Саурона» из «Властелина колец» — джет, пронизывающий кольцеобразное магнитное поле объекта, устремлен к нашей планете, а сам блазар может оказаться одним из наиболее ярких источников нейтрино в космосе.
Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.
Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.
Команда исследователей из Сколтеха, МФТИ, Института искусственного интеллекта AIRI и других научных центров разработала метод, позволяющий не просто отличать тексты, написанные человеком, от сгенерированных нейросетью, но и понимать, по каким именно признакам классификатор принимает решение о том, является ли текст генерацией или нет. Анализируя внутренние состояния глубоких слоев языковой модели, ученые смогли выделить и интерпретировать численные признаки, отвечающие за стилистику, сложность и «степень уверенности» текста.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии