Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В МТУСИ применили связку методов машинного обучения для выявления аномалий в интернет-трафике
Аномалии в интернет-трафике — это непредсказуемые, необычные или отклоняющиеся от установленных норм взаимодействия в сети. Они могут указывать на наличие вредоносных программ, взломов или других нежелательных событий. Возможности методов машинного обучения открывают новые горизонты для точной классификации трафика в обнаружении аномальных значений для предотвращения кибератак. Один из таких методов предложил магистрант МТУСИ.
Мы живем в обществе, зависимом от компьютерных систем. Идентификация и классификация интернет-трафика — важные задачи для обеспечения безопасности и эффективности работы сетей. В области сетевой безопасности значительный интерес вызывает обнаружение аномальных значений из больших объемов информации, создаваемых сетевым трафиком.
Аномалии в интернет-трафике — это непредсказуемые, необычные или отклоняющиеся от установленных норм взаимодействия в сети. Они могут указывать на наличие вредоносных программ, взломов или других нежелательных событий. Возможности методов машинного обучения открывают новые горизонты для точной классификации трафика в обнаружении аномальных значений для предотвращения кибератак. Один из таких методов предложил магистрант МТУСИ Данила Токарев.
«Большие массивы данных обладают высокой размерностью, что затрудняет их анализ и принятие решений. В качестве алгоритма выделения отличительных признаков для массива данных в своей работе мы опирались на анализ главных компонент (Principal Component Analysis, PCA). Данное решение помогло значительно увеличить скорость анализа трафика и исключить нерелевантные данные и избыточные характеристики. На этапе предобработки трафик проходил через кластеризацию, осуществляемую методом Fuzzу C Mean (FCM). Данный алгоритм позволил заранее сформировать кластеры и ускорил процесс обработки данных», – пояснил Денис Токарев.
Классификация аномалий производилась с помощью алгоритма K-Nearest Neighbor (KNN), который обеспечил высокую точность результатов и был выделен одним из лучших решений для классификации интернет-трафика. Улучшить производительность KNN удалось посредством использования PCA для редукции признаков и применением алгоритма Fuzzy C-Mean для построения кластера перед процессом классификации. Полученная комбинация PCA и алгоритма Fuzzy C-Mean позволила сократить время выполнения алгоритма KNN, повысить точность и увеличить долю верного определения.
В ходе исследования было выявлено, что комбинация алгоритмов машинного обучения позволяет достичь высокой точности обнаружения аномалий в интернет-трафике. Установлено, что существенный вклад в ускорение работы алгоритма KNN вносит PCA, причем скорость выполнения увеличивается примерно в 4-5 раз.
По результатам проведенных исследований разработчики представили гибридный алгоритм, который основан на совместном использовании методов машинного обучения и предназначен для обнаружения аномалий в интернет-трафике.
Разработанный алгоритм имеет широкий спектр применения в сетевой безопасности, мониторинге сетей, обнаружении вредоносного программного обеспечения и предотвращении кибератак. Он также может быть полезен для провайдеров услуг интернета, чтобы оптимизировать сетевую инфраструктуру и повысить качество обслуживания. Обнаружение аномалий в интернет-трафике имеет огромное значение для системных администраторов, позволяя своевременно обнаруживать вторжения, вредоносные атаки, предотвращать системные сбои и массовое заражение компьютерных систем.
В дальнейшем предлагается использовать связку методов машинного обучения для выявления аномалий в интернет-трафике с высокой точностью и минимальным количеством ложных срабатываний.
Масштабный анализ геномов показал, что вид Homo sapiens возник в результате смешения двух древних популяций. Они разделились полтора миллиона лет назад, а затем воссоединились до расселения по миру.
В мире квантовой физики каждый день происходят удивительные открытия, которые меняют наше понимание фундаментальных законов природы. Недавнее исследование, проведенное на физическом факультете ТГУ, раскрыло новые свойства электронов, которые могут иметь важные последствия для квантовой электродинамики и технологий будущего. Ученые обнаружили, что волновая функция одного электрона может поддерживать особые квазичастицы — плазмон-поляритоны.
Исследователи попытались выяснить, как можно распознать копию нашей планеты в глубоком космосе. Они «поместили» Землю в далекую звездную систему и обнаружили, что изменения ее яркости по мере вращения вокруг оси и движения по орбите выдавали бы очень важную подробность: этот мир окутан облаками.
Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).
Масштабный анализ геномов показал, что вид Homo sapiens возник в результате смешения двух древних популяций. Они разделились полтора миллиона лет назад, а затем воссоединились до расселения по миру.
В мире квантовой физики каждый день происходят удивительные открытия, которые меняют наше понимание фундаментальных законов природы. Недавнее исследование, проведенное на физическом факультете ТГУ, раскрыло новые свойства электронов, которые могут иметь важные последствия для квантовой электродинамики и технологий будущего. Ученые обнаружили, что волновая функция одного электрона может поддерживать особые квазичастицы — плазмон-поляритоны.
В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.
Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).
Исследователи из Южной Кореи и Канады нашли новое объяснение «парадоксу счастья». Они обнаружили, что попытки стать счастливее приводят к противоположному результату, потому что истощают систему самоконтроля.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии