• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
08.04.2024, 17:09
МТУСИ
334

В МТУСИ применили связку методов машинного обучения для выявления аномалий в интернет-трафике

❋ 4.3

Аномалии в интернет-трафике — это непредсказуемые, необычные или отклоняющиеся от установленных норм взаимодействия в сети. Они могут указывать на наличие вредоносных программ, взломов или других нежелательных событий. Возможности методов машинного обучения открывают новые горизонты для точной классификации трафика в обнаружении аномальных значений для предотвращения кибератак. Один из таких методов предложил магистрант МТУСИ.

В МТУСИ применили связку методов машинного обучения для выявления аномалий в интернет-трафике
В МТУСИ применили связку методов машинного обучения для выявления аномалий в интернет-трафике / © Getty images

Мы живем в обществе, зависимом от компьютерных систем. Идентификация и классификация интернет-трафика — важные задачи для обеспечения безопасности и эффективности работы сетей. В области сетевой безопасности значительный интерес вызывает обнаружение аномальных значений из больших объемов информации, создаваемых сетевым трафиком.

Аномалии в интернет-трафике — это непредсказуемые, необычные или отклоняющиеся от установленных норм взаимодействия в сети. Они могут указывать на наличие вредоносных программ, взломов или других нежелательных событий. Возможности методов машинного обучения открывают новые горизонты для точной классификации трафика в обнаружении аномальных значений для предотвращения кибератак. Один из таких методов предложил магистрант МТУСИ Данила Токарев.

«Большие массивы данных обладают высокой размерностью, что затрудняет их анализ и принятие решений. В качестве алгоритма выделения отличительных признаков для массива данных в своей работе мы опирались на анализ главных компонент (Principal Component Analysis, PCA). Данное решение помогло значительно увеличить скорость анализа трафика и исключить нерелевантные данные и избыточные характеристики. На этапе предобработки трафик проходил через кластеризацию, осуществляемую методом Fuzzу C Mean (FCM). Данный алгоритм позволил заранее сформировать кластеры и ускорил процесс обработки данных», – пояснил Денис Токарев.

Классификация аномалий производилась с помощью алгоритма K-Nearest Neighbor (KNN), который обеспечил высокую точность результатов и был выделен одним из лучших решений для классификации интернет-трафика. Улучшить производительность KNN удалось посредством использования PCA для редукции признаков и применением алгоритма Fuzzy C-Mean для построения кластера перед процессом классификации. Полученная комбинация PCA и алгоритма Fuzzy C-Mean позволила сократить время выполнения алгоритма KNN, повысить точность и увеличить долю верного определения.

В ходе исследования было выявлено, что комбинация алгоритмов машинного обучения позволяет достичь высокой точности обнаружения аномалий в интернет-трафике. Установлено, что существенный вклад в ускорение работы алгоритма KNN вносит PCA, причем скорость выполнения увеличивается примерно в 4-5 раз.

По результатам проведенных исследований разработчики представили гибридный алгоритм, который основан на совместном использовании методов машинного обучения и предназначен для обнаружения аномалий в интернет-трафике.

Разработанный алгоритм имеет широкий спектр применения в сетевой безопасности, мониторинге сетей, обнаружении вредоносного программного обеспечения и предотвращении кибератак. Он также может быть полезен для провайдеров услуг интернета, чтобы оптимизировать сетевую инфраструктуру и повысить качество обслуживания. Обнаружение аномалий в интернет-трафике имеет огромное значение для системных администраторов, позволяя своевременно обнаруживать вторжения, вредоносные атаки, предотвращать системные сбои и массовое заражение компьютерных систем.

В дальнейшем предлагается использовать связку методов машинного обучения для выявления аномалий в интернет-трафике с высокой точностью и минимальным количеством ложных срабатываний. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский технический университет связи и информатики (МТУСИ) — ведущее отраслевое техническое высшее учебное заведение Центральной России по подготовке кадров для IT и телеком-индустрии, подведомственное Министерству цифрового развития, связи и массовых коммуникаций РФ. Основан в 1921 году на базе Московского электротехнического института народной связи им. В.Н. Подбельского. Ежегодно МТУСИ выпускает востребованных специалистов в области связи, информационных технологий, квантовых коммуникаций, робототехники, информационной безопасности и цифровой экономики. В состав университета входят 5 факультетов, 34 кафедры, 2 филиала (Волго-Вятский и Северо-Кавказский), Колледж телекоммуникаций, Музей электросвязи, Квантовый центр, Центр робототехники, Лаборатория AR/VR, Центры заочного обучения бакалавров и магистров, Центр индивидуального обучения.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
15 сентября, 10:36
Игорь Байдов

Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.

16 сентября, 13:21
Адель Романова

Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.

15 сентября, 11:30
РНФ

Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

15 сентября, 10:36
Игорь Байдов

Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.

15 сентября, 11:30
РНФ

Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

9 сентября, 11:03
Адель Романова

Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.

11 сентября, 12:04
ПНИПУ

Все больше покупателей начинают отказываться от привычки делать покупки на маркетплейсах, а число новых продавцов на площадках практически не увеличилось. Аналитика показывает, что за первый квартал 2025 года — прирост селлеров составил всего 0,45% по сравнению с аналогичным периодом прошлого года. В то же время, маркетплейсы активно расширяют сеть пунктов выдачи, особенно в регионах, где физическое присутствие всех брендов невозможно. Ученые Пермского Политеха рассказали, почему люди стали реже совершать покупки на маркетплейсах.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно