Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В МТУСИ применили связку методов машинного обучения для выявления аномалий в интернет-трафике
Аномалии в интернет-трафике — это непредсказуемые, необычные или отклоняющиеся от установленных норм взаимодействия в сети. Они могут указывать на наличие вредоносных программ, взломов или других нежелательных событий. Возможности методов машинного обучения открывают новые горизонты для точной классификации трафика в обнаружении аномальных значений для предотвращения кибератак. Один из таких методов предложил магистрант МТУСИ.
Мы живем в обществе, зависимом от компьютерных систем. Идентификация и классификация интернет-трафика — важные задачи для обеспечения безопасности и эффективности работы сетей. В области сетевой безопасности значительный интерес вызывает обнаружение аномальных значений из больших объемов информации, создаваемых сетевым трафиком.
Аномалии в интернет-трафике — это непредсказуемые, необычные или отклоняющиеся от установленных норм взаимодействия в сети. Они могут указывать на наличие вредоносных программ, взломов или других нежелательных событий. Возможности методов машинного обучения открывают новые горизонты для точной классификации трафика в обнаружении аномальных значений для предотвращения кибератак. Один из таких методов предложил магистрант МТУСИ Данила Токарев.
«Большие массивы данных обладают высокой размерностью, что затрудняет их анализ и принятие решений. В качестве алгоритма выделения отличительных признаков для массива данных в своей работе мы опирались на анализ главных компонент (Principal Component Analysis, PCA). Данное решение помогло значительно увеличить скорость анализа трафика и исключить нерелевантные данные и избыточные характеристики. На этапе предобработки трафик проходил через кластеризацию, осуществляемую методом Fuzzу C Mean (FCM). Данный алгоритм позволил заранее сформировать кластеры и ускорил процесс обработки данных», – пояснил Денис Токарев.
Классификация аномалий производилась с помощью алгоритма K-Nearest Neighbor (KNN), который обеспечил высокую точность результатов и был выделен одним из лучших решений для классификации интернет-трафика. Улучшить производительность KNN удалось посредством использования PCA для редукции признаков и применением алгоритма Fuzzy C-Mean для построения кластера перед процессом классификации. Полученная комбинация PCA и алгоритма Fuzzy C-Mean позволила сократить время выполнения алгоритма KNN, повысить точность и увеличить долю верного определения.
В ходе исследования было выявлено, что комбинация алгоритмов машинного обучения позволяет достичь высокой точности обнаружения аномалий в интернет-трафике. Установлено, что существенный вклад в ускорение работы алгоритма KNN вносит PCA, причем скорость выполнения увеличивается примерно в 4-5 раз.
По результатам проведенных исследований разработчики представили гибридный алгоритм, который основан на совместном использовании методов машинного обучения и предназначен для обнаружения аномалий в интернет-трафике.
Разработанный алгоритм имеет широкий спектр применения в сетевой безопасности, мониторинге сетей, обнаружении вредоносного программного обеспечения и предотвращении кибератак. Он также может быть полезен для провайдеров услуг интернета, чтобы оптимизировать сетевую инфраструктуру и повысить качество обслуживания. Обнаружение аномалий в интернет-трафике имеет огромное значение для системных администраторов, позволяя своевременно обнаруживать вторжения, вредоносные атаки, предотвращать системные сбои и массовое заражение компьютерных систем.
В дальнейшем предлагается использовать связку методов машинного обучения для выявления аномалий в интернет-трафике с высокой точностью и минимальным количеством ложных срабатываний.
Акведуки, дороги, бани и города, которые римляне построили на оккупированных территориях, часто воспринимаются историками как символ прогресса. Но археологические раскопки, проведенные учеными из Великобритании, открыли обратную, мрачную сторону этого «развития». Оказалось, римское владычество на несколько поколений подорвало здоровье местного населения, особенно тех, кто жил в административных центрах. Исследователи увидели эту печальную картину в костях наиболее уязвимых групп населения — женщин и детей, которые первыми реагируют на ухудшение условий жизни.
Человек столетиями охотился на самых недружелюбных медведей, считая их опасными хищниками. На примере апеннинских медведей ученые доказали, что соседство с людьми сделало этих животных менее враждебными на генетическом уровне.
Зоологи из Университета Уэйк-Форест обнаружили редкий феномен в поведении насканских олуш (Sula granti): самки этих птиц открыто спариваются со множеством соседей, но приносят потомство исключительно от постоянных партнеров. Исследование показало, что самки обладают полной сексуальной свободой благодаря физическому превосходству над самцами и контролируют отцовство с помощью строгого календаря встреч.
Акведуки, дороги, бани и города, которые римляне построили на оккупированных территориях, часто воспринимаются историками как символ прогресса. Но археологические раскопки, проведенные учеными из Великобритании, открыли обратную, мрачную сторону этого «развития». Оказалось, римское владычество на несколько поколений подорвало здоровье местного населения, особенно тех, кто жил в административных центрах. Исследователи увидели эту печальную картину в костях наиболее уязвимых групп населения — женщин и детей, которые первыми реагируют на ухудшение условий жизни.
У побережья Канады морские биологи стали свидетелями необычного случая. Косатки и дельфины объединили свои силы, чтобы вместе охотиться на тихоокеанского лосося. Они погружались в темные глубины, а после удачной охоты делились пищей. Это первое задокументированное охотничье сотрудничество между двумя видами морских млекопитающих.
Человек столетиями охотился на самых недружелюбных медведей, считая их опасными хищниками. На примере апеннинских медведей ученые доказали, что соседство с людьми сделало этих животных менее враждебными на генетическом уровне.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
