Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В МТУСИ предложили метод машинного обучения для обнаружения фишингового сайта
Ученые МТУСИ проанализировали возможности интеграции предложенной ими модели в систему защиты веб-приложений. Внедрение автоматизированных инструментов для обнаружения потенциально фишинговых URL-адресов на ранних стадиях их проникновения в сеть поможет существенно снизить риски для пользователей и организаций.
Информационная безопасность веб-приложений является одним из наиболее актуальных вопросов современного мира, а фишинг — серьезная угроза для миллионов пользователей интернет-ресурсов. Фишинговые сайты создаются таким образом, чтобы максимально быть похожими на легитимные ресурсы, они заманивают миллионы пользователей на ложные веб-сайты, похищая конфиденциальную информацию, такую как пароль, данные банковской карты или адрес электронной почты. Последствия для организаций, чьи сайты были скомпрометированы, очень серьезны — это потеря прибыли, потеря доверия клиентов, санкции от поисковых систем и проблемы с индексацией сайта.
Машинное обучение становится все более популярным инструментом в борьбе с фишингом. С его помощью можно провести анализ свойств веб-страницы: процесс сводится к бинарной классификации, где веб-ресурсы определяются как фишинговые или легитимные на основе их атрибутов. После проведения классификации производится оценка качества результатов.
Формирование набора данных является важным аспектом исследования для обнаружения фишинговых сайтов на основе подмены адресов URL. Несмотря на то, что исследования в этой области имеют высокие оценки качества, существует проблема нехватки разнообразных и сбалансированных данных, что приводит к смещению оценок и делает результаты исследования необъективными.
Над решением проблемы работает магистрант МТУСИ Людмила Емец под руководством доцента кафедры «Информационная безопасность» Александра Большакова. Проведено исследование с целью выбора атрибутов и метода классификации мошеннических сайтов для обнаружения фишингового ресурса в интернете.
Одним из ключевых аспектов исследования стало применение методов бинарной классификации, основанных на машинном обучении на языке Python с использованием библиотеки Scikit-Learn.
В ходе исследования обнаружено, что использование метода бинарной классификации усложняется процессом формирования набора данных от сторонних сервисов. Время выполнения этих запросов зависит от скорости и стабильности интернет-соединения, что может привести к непредсказуемой задержке и, следовательно, к усложнению процесса анализа.
«Для создания более сбалансированного набора данных сформированы две случайные выборки адресов сайтов — фишинговые и легитимные. Затем получен набор данных из 8600 URL-адресов, включающий как безопасные, так и небезопасные адреса, которые были поделены на обучающий и тестовый в соотношении 70 процентов на 30. Далее проведен анализ данных, который осуществлялся с применением двух подходов: использование данных из открытых источников и лексический анализ доменных имён. Применение n-граммного метода позволило выделить ключевые слова и сформировать дополнительные атрибуты лексического типа. Оценка зависимости атрибутов показала, что между ними нет высокой корреляции, что подтверждает их информативность для модели машинного обучения», – рассказала Людмила Емец.
Ученые МТУСИ разработали модель классификации на основе алгоритмов «Градиентного бустинга», «K-Ближайших Соседей», «Логистической регрессии», «Наивного Байсса», «Случайного леса» и «Дерева принятых решений». Для оценки результатов работы моделей классификации и сравнения моделей между собой использовались меры точности, полноты, f1-мера и площадь под ROC-кривой. ROC-кривая позволила визуально иллюстрировать зависимость между количеством верно классифицированных фишинговых сайтов и количеством неверно классифицированных легитимных сайтов как вредоносных. Значение AUC (площадь под ROC-кривой) оказалось важным численным показателем качества моделей, где близкое к единице значение AUC характеризует лучший алгоритм классификации.
«Была обнаружена взаимосвязь между свойствами веб-страницы и наличием фишингового ресурса в интернете. Проведен анализ таких характеристик веб-страницы как адрес, информация о домене, параметры подключения и наличие ключевых слов. Для построения модели выделены атрибуты (признаки) веб-ресурсов и получен набор данных: обучающая выборка с известным статусом сайтов и тестовая выборка с неизвестным. Ключевым этапом в предварительной обработке данных стал анализ корреляции атрибутов с применением коэффициента Пирсона. Обнаружено отсутствие высоких корреляций между выделенными атрибутами. На основе выделенных атрибутов и анализа свойств веб-ресурсов была сформирована обучающая выборка, что позволило значительно улучшить точность модели», – пояснил Александр Большаков.
Отмечено, что лексический анализ URL-адресов фишинговых ресурсов помогает обнаружить специфические особенности и шаблоны, указывающие на их мошеннический характер. Эти особенности могут включать опечатки в популярных доменах, дополнительные поддомены, специальные символы и кодировки для маскировки. Исследователи особое внимание уделили частоте неалфавитных символов (точки, дефисы, цифры), поскольку такие символы часто используются злоумышленниками.
Применение «тепловой» карты показало отсутствие незначимых атрибутов, что подтверждает правомерность формирования выбранных атрибутов. Анализ ROC-кривых и результаты оценки качества моделей позволили выявить, что алгоритм классификации «Градиентный бустинг» демонстрирует наилучшие показатели среди рассмотренных моделей.
В ходе исследования проанализированы возможности интеграции предложенной модели в системы защиты веб-приложений. Внедрение автоматизированных инструментов для обнаружения потенциально фишинговых URL-адресов на ранних стадиях их проникновения в сеть может существенно снизить риски для пользователей и организаций. Результаты оценки качества классификации на полученных данных подтверждают, что предложенный подход способен с высокой степенью достоверности выявлять фишинговые сайты.
Дальнейшие исследования в этой области могут быть направлены на улучшение алгоритмов машинного обучения путём надстройки параметров модели классификатора и использование новых источников данных для создания более комплексных и надежных средств защиты от фишинговых атак. Это открывает возможности для разработки более совершенных и надежных систем защиты пользователей в сети интернет.
Материал подготовлен на основе статьи «Обнаружение фишингового сайта методами машинного обучения», размещенной в сборнике №1-2023 «Телекоммуникации и информационные технологии».
Известный американский отраслевой обозреватель Эрик Бергер взял интервью у экипажа космического корабля Boeing, из-за технических проблем которого два астронавта задержались на орбите на девять месяцев вместо одной недели. Детали, которые они озвучили, указывают на серьезные проблемы Starliner, о которых ранее умалчивали. Люди провели немало времени при глубоко нештатной температуре. При слегка другом сценарии миссии экипаж корабля мог погибнуть. Официальные заявления NASA и Boeing сразу после июньского полета к МКС, судя по интервью, были заведомо неправдивыми.
Рынок электромобилей стремительно расширяется. На нем представлены не только пассажирские, но и грузовые модели, а также специализированный транспорт. Сегодня главные задачи по совершенствованию транспорта на электрической тяге — увеличение пробега на одной заправке (зарядке), повышение емкости и долговечности накопителей, применение экологически «чистых» аккумуляторов на всем его жизненном цикле. Все эти задачи связаны с одним важным конструктивным элементом — аккумуляторной батареей, которая все еще остается «головной болью» многих ученых и конструкторов мира. Над решением этих задач работают и специалисты компании UST Inc. Результаты их исследований показывают, что ставку в ближайшей перспективе нужно делать не на литий-ионные аккумуляторы.
Международная группа астрофизиков провела анализ астрономических данных и обнаружила признаки, указывающие на то, что джет TXS 0506+056 подвергается гравитационному линзированию. Исследования в этом направлении могут существенно изменить наше понимание структуры джетов блазаров и механизмов генерации нейтрино.
Ученые из Сколтеха исследовали разнообразие молекул, которые могут образовываться из атомов кислорода и углерода. Помимо широко известных углекислого и угарного газов, моделирование обнаружило две сотни экзотических, но относительно стабильных соединений этих двух элементов, многие из которых не были описаны ранее. Этот класс веществ представляет интерес для исследований космоса, аккумуляторных технологий, биохимии и — неожиданным образом — для разработки промышленной взрывчатки и ракетного топлива. Как оказалось, некоторые из открытых веществ при распаде будут высвобождать более 75 процентов взрывной энергии тротила.
Известный американский отраслевой обозреватель Эрик Бергер взял интервью у экипажа космического корабля Boeing, из-за технических проблем которого два астронавта задержались на орбите на девять месяцев вместо одной недели. Детали, которые они озвучили, указывают на серьезные проблемы Starliner, о которых ранее умалчивали. Люди провели немало времени при глубоко нештатной температуре. При слегка другом сценарии миссии экипаж корабля мог погибнуть. Официальные заявления NASA и Boeing сразу после июньского полета к МКС, судя по интервью, были заведомо неправдивыми.
Два ключевых события сыграли решающую роль в формировании генетического профиля современных европейских народов. Первое связано с приходом ранних фермеров из Анатолии примерно восемь тысяч лет назад, второе — масштабная миграция на запад носителей ямной степной культуры, начавшаяся пять тысяч лет назад. Однако ученые видят множество отличий от общей картины в разных регионах. В новой работе они проанализировали ДНК древних жителей самого северо-запада Европы и обнаружили более тесную связь с охотниками-собирателями, чем где бы то ни было.
В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.
Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).
Масштабный анализ геномов показал, что вид Homo sapiens возник в результате смешения двух древних популяций. Они разделились полтора миллиона лет назад, а затем воссоединились до расселения по миру.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии