Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Исследователи обнаружили неинвазивные биомаркеры клинической депрессии с помощью машинного обучения
Группа ученых из Сколтеха, Университета Шарджи и Казахского национального университета имени аль-Фараби выявила биологические маркеры клинической депрессии, с помощью которых можно добиться более объективной диагностики заболевания.
Результаты исследования опубликованы в журнале Neurobiology of Stress. Клиническая депрессия, или большое депрессивное расстройство, является сегодня второй наиболее частой причиной потери трудоспособности после онкологических заболеваний. Ученые ожидают, что к 2030 году она выйдет на первое место. По данным Всемирной организации здравоохранения, этой хронической болезни подвержены 280 миллионов человек по всему миру. Несмотря на это, диагностировать клиническую депрессию все еще сложно.
«Сейчас диагностика психических расстройств в основном осуществляется с помощью беседы пациента с врачом, заполнения опросных листов и оценивания результатов с помощью шкал. Иногда разные врачи могут по-разному интерпретировать результаты, возникает фактор субъективности. До сих пор в мире нет надежных биомаркеров — объективных показателей предрасположенности к психическому заболеванию или его развития. Мы хотели найти такие биомаркеры, которые будут надежными и при этом доступными. МРТ-исследование, например, можно провести не везде, а анализ крови многие стараются избегать», — рассказывает соавтор работы, старший преподаватель и руководитель исследовательской группы Центра прикладного искусственного интеллекта в Сколтехе Максим Шараев.
В рамках совместного с Университетом Шарджи проекта учёные использовали комплексные мультимодальные данные, которые характеризуют пациента с разных сторон — МРТ-исследования, электроэнцефалографию, анализ крови, генотипирование и транскриптомный анализ.
«Вероятно, эра простых биомаркеров заканчивается. Теперь нет какого-то одного критерия, который покажет, есть у человека заболевание или нет. Нужны комбинации этих маркеров, и их помогают находить методы машинного обучения. Мы получили комплексные данные и сделали такие модели машинного обучения, которые на основе этих данных смогут создать интегративные биомаркеры. Но перед тем, как объединить разные типы данных, мы исследовали каждый тип в отдельности, чтобы найти какие-то предпосылки для анализа, на что обращать внимание», — объясняет Шараев.
Опубликованная работа посвящена одному типу данных — транскриптомному, то есть анализу экспрессии генов в клетках, которые могут предсказать клиническую депрессию. Часть биомаркеров обнаружили с помощью машинного обучения и открытых баз данных, сравнивая показатели для пациентов разных национальностей. Данные транскриптомного анализа 170 пациентов с клинической депрессией и 121 здорового пациента параллельно изучали двумя разными методами — биоинформатики и машинного обучения.
«Стандартные методы биоинформатики помогают работать с многомерными данными при маленьких выборках, накладывать на них ограничения, фильтровать их и приходить к числу генов, которые затем можно проверять в лаборатории. Это стандартные подходы, которые основаны на классической статистике, но у них есть ряд недостатков.
Например, может быть слишком много ложных срабатываний, у них достаточно долгое время сходимости, а часть важных признаков может быть пропущена. Мы в Сколтехе дополнили эти методы решениями машинного обучения. Взяв те же данные, мы настроили модели, добились высокого качества классификаций, а затем получили значимые признаки — гены, экспрессия которых влияла на результат», — комментирует Шараев.
Ученые получили наиболее значимые гены, сравнив результаты двух исследований. Такой подход позволил повысить их объективность, так как методы, используемые параллельно, основаны на разных моделях. После валидации результатов на независимой выборке их подтвердили и с помощью лабораторных исследований — анализа слюны 12 пациентов с клинической депрессией и восьми здоровых пациентов. С помощью атласа мозга Аллена также показали, что эти гены экспрессируются в различных участках мозга человека.
«В дальнейшем можно расширять и уточнять набор этих генов для скрининга и быстрой диагностики. Все это можно проводить по слюне. Не надо брать кровь или проводить сложные исследования. Для предварительного анализа этого достаточно, чтобы сделать какие-то выводы», — объясняет Шараев.
«Наше исследование показывает, как важно использовать искусственный интеллект в сочетании с методами биоинформатики для лучшего понимания молекулярных механизмов таких сложных болезней, как большое депрессивное расстройство. Открытие неинвазивных биомаркеров очень ценно как для пациентов, так и для клинических психиатров», — подытоживает первый автор исследования, профессор, директор Научно-инновационного центра точной медицины в Университете Шарджи Рифат Хамуди.
Исследование проведено в рамках совместного с Университетом Шарджи проекта Interpretable Artificial Intelligence and Deep Learning models based on integrative Neuroimaging and Genetics data for predicting abnormal emotional development.
Обитающий в полярных районах Северного полушария гренландский кит (Balaena mysticetus) живет более двух столетий и почти не болеет раком. Секрет его долголетия оказался скрыт в клетках соединительной ткани, ответственной за заживление ран: при пониженной температуре в них активируется особый белок, усиливающий восстановление поврежденной ДНК.
Международная группа ученых провела необычный эксперимент. Исследователи взяли образцы фекалий у детей с разными типами темперамента и пересадили их крысам. После этого животные начали вести себя по-разному: те, кто получил микробиоту от активных детей, стали смелее и больше исследовали новое пространство. Это открытие намекает на то, что бактерии, живущие в кишечнике с детства, в какой-то мере способны влиять на формирование личности.
Международная команда ученых обнаружила в море Уэдделла ранее неизвестное место массового гнездования антарктических рыб Lindbergichthys nudifrons. Океанологи зафиксировали скопления более тысячи ухоженных гнезд, расположенных по сложным геометрическим узорам. Коллективное расселение помогает рыбам защищаться от хищников.
Обитающий в полярных районах Северного полушария гренландский кит (Balaena mysticetus) живет более двух столетий и почти не болеет раком. Секрет его долголетия оказался скрыт в клетках соединительной ткани, ответственной за заживление ран: при пониженной температуре в них активируется особый белок, усиливающий восстановление поврежденной ДНК.
Владельцы домашних животных нередко «очеловечивают» их и окружают заботой так же, как маленьких детей. Кажется, что такое внимание должно помочь питомцам прожить долгую счастливую жизнь и уберечь их от болезней, однако ученые заметили противоположный эффект. Его в новой книге описала международная команда ветеринаров.
Международная группа ученых провела необычный эксперимент. Исследователи взяли образцы фекалий у детей с разными типами темперамента и пересадили их крысам. После этого животные начали вести себя по-разному: те, кто получил микробиоту от активных детей, стали смелее и больше исследовали новое пространство. Это открытие намекает на то, что бактерии, живущие в кишечнике с детства, в какой-то мере способны влиять на формирование личности.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
