Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В Перми нашли способ повысить эффективность системы городского теплоснабжения
Страна готовится к зиме, поэтому вопрос теплоснабжения в многоквартирных домах становится актуальным. Поставка теплоносителя потребителям требует поддержания температуры на определенном уровне с учетом прогноза погоды на ближайший период. Для оптимального режима работы оборудования, генерирующего тепло котельной, используют интеллектуальные системы управления, которые основаны на методах машинного обучения. Они нуждаются в регулярном обучении с учетом изменений в техническом состоянии теплосети. Ученые Пермского Политеха с коллегами из компании «СофтМ» разработали и протестировали интеллектуальный модуль, включающий наиболее эффективные модели корректировки результатов нейросетевого прогнозирования. Это снизит риски возникновения ошибок и повысит эффективность расходования энергоресурсов.
Статья опубликована в журнале «Вестник ЮУрГУ. Компьютерные технологии, управление, радиотехника». Исследование проведено в рамках программы стратегического академического лидерства «Приоритет 2030».
Теплоснабжение жилых помещений горячей водой осуществляется по трубам системы центрального отопления. Котельная играет роль источника тепла, где вода нагревается, а затем подается на тепловой узел микрорайона. Для оптимального регулирования режима работы котельной теплоснабжающая организация может использовать различные методы и системы управления. Например, для газовых котельных внедряют те, что в автоматизированном режиме поддерживают заданную температуру на выходе через регулирование работы котла и подачи топлива в соответствии с требуемыми параметрами. Рациональный режим сжигания топлива позволяет снизить затраты на энергоноситель (газ) и повысить экономическую и экологическую эффективность процесса.
В ходе эксплуатации и ремонта тепловой сети изменяются ее свойства, увеличиваются или уменьшаются тепловые потери, которые снижают точность работы модели управления. Для компенсации этих изменений необходимо проводить периодическое дообучение нейросетевой модели, чтобы она могла прогнозировать работу сети с учетом температуры окружающего воздуха и технического состояния теплосети. Однако это требует значительных временных затрат.
Поэтому ученые Пермского Политеха впервые использовали и сравнили две модели уточнения результатов прогнозного нейросетевого управления, а также проанализировали эффективность каждой. Рассматривалась статистическая регрессионная линейная модель, поскольку она наиболее высокоточная и простая в обучении, а также модель на основе деревьев решений XGBoost. Последняя представляет собой графическую схему, состоящую из вершин (узлов), конечных узлов (листьев) и ребер (ветвей), которые описывают вероятности развития событий. Каждая следующая ветвь разрабатывается так, чтобы исправить ошибку предыдущей, уменьшая среднее отклонение. Это происходит до тех пор, пока ошибка не снизится, либо не выполнится одно из правил ранней остановки.
Для обучения и тестирования моделей политехники выбрали 10 многоквартирных домов, данные для которых за определенный период содержат наименьшее количество пропусков по техническим причинам. Для каждого построили отдельную модель, с использованием которой вычислялись температуры теплоносителя на входе в многоквартирные дома. Затем результаты сравнили с реальными значениями из заданной выборки.
«Максимальное отклонение вычисленной температуры от измеренной в XGBoost составило 4,8 °С, а в линейной модели – 6,1 °С. Это значит, что первая эффективнее, поскольку величина ее ошибки гораздо ниже. Предложенные методы апробированы на реальных данных, что подтверждает возможность их использования при разработке интеллектуальной информационной системы управления теплоснабжением», – комментирует Валерий Столбов, профессор кафедры «Вычислительная математика, механика и биомеханика» ПНИПУ, доктор технических наук.
Ученые ПНИПУ определили наиболее эффективную модель предсказания поведения тепловой сети, которая позволит правильно выбирать управляющее воздействие. Это значительно снизит риск нарушения экологических правил и трату ресурсов на перерасход топлива и электроэнергии, обслуживание и ремонт оборудования.
Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.
Растительная диета давно стала золотым стандартом для тех, кто мечтает о долгой и здоровой жизни. Но китайские ученые внесли серьезные коррективы в этот постулат. Они обнаружили, что большинство местных долгожителей, перешагнувших столетний рубеж, регулярно употребляют в пищу мясо. Особенно заметна эта связь у одной специфической группы пожилых людей, что заставляет по-новому взглянуть на диетические рекомендации для самых старших поколений.
Наш организм не синхронизирован с современным образом жизни и это создает нам много проблем: мы переедаем, страдаем депрессиями и болезнями сердца. Коренным образом с этим бороться нельзя, по крайней мере, не вернувшись к жизни охотников-собирателей. Но значительной части этих проблем вполне можно помочь… носимым устройством. Причем это не далекая перспектива, а реальность уже наших дней.
Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.
Международная научная группа при участии МФТИ разработала композитный гель-полимерный электролит для аккумуляторов. Этот материал позволит создать безопасные высокомощные батареи, что важно для электромобилей, гаджетов и систем хранения энергии.
Исследователи Центра языка и мозга ВШЭ с помощью магнитоэнцефалографии изучили, как мозг взрослых и детей реагирует на слова при чтении. Они показали, что у детей мозг дольше обрабатывает даже часто употребляющиеся в речи слова, а слова, которые встречаются редко, и псевдослова обрабатывает одинаково — медленно и по частям. С возрастом система перестраивается: высокочастотные слова переходят на быстрый маршрут, а вот новые сочетания букв по-прежнему анализируются медленно.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно