Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В Перми нашли способ повысить эффективность системы городского теплоснабжения
Страна готовится к зиме, поэтому вопрос теплоснабжения в многоквартирных домах становится актуальным. Поставка теплоносителя потребителям требует поддержания температуры на определенном уровне с учетом прогноза погоды на ближайший период. Для оптимального режима работы оборудования, генерирующего тепло котельной, используют интеллектуальные системы управления, которые основаны на методах машинного обучения. Они нуждаются в регулярном обучении с учетом изменений в техническом состоянии теплосети. Ученые Пермского Политеха с коллегами из компании «СофтМ» разработали и протестировали интеллектуальный модуль, включающий наиболее эффективные модели корректировки результатов нейросетевого прогнозирования. Это снизит риски возникновения ошибок и повысит эффективность расходования энергоресурсов.
Статья опубликована в журнале «Вестник ЮУрГУ. Компьютерные технологии, управление, радиотехника». Исследование проведено в рамках программы стратегического академического лидерства «Приоритет 2030».
Теплоснабжение жилых помещений горячей водой осуществляется по трубам системы центрального отопления. Котельная играет роль источника тепла, где вода нагревается, а затем подается на тепловой узел микрорайона. Для оптимального регулирования режима работы котельной теплоснабжающая организация может использовать различные методы и системы управления. Например, для газовых котельных внедряют те, что в автоматизированном режиме поддерживают заданную температуру на выходе через регулирование работы котла и подачи топлива в соответствии с требуемыми параметрами. Рациональный режим сжигания топлива позволяет снизить затраты на энергоноситель (газ) и повысить экономическую и экологическую эффективность процесса.
В ходе эксплуатации и ремонта тепловой сети изменяются ее свойства, увеличиваются или уменьшаются тепловые потери, которые снижают точность работы модели управления. Для компенсации этих изменений необходимо проводить периодическое дообучение нейросетевой модели, чтобы она могла прогнозировать работу сети с учетом температуры окружающего воздуха и технического состояния теплосети. Однако это требует значительных временных затрат.
Поэтому ученые Пермского Политеха впервые использовали и сравнили две модели уточнения результатов прогнозного нейросетевого управления, а также проанализировали эффективность каждой. Рассматривалась статистическая регрессионная линейная модель, поскольку она наиболее высокоточная и простая в обучении, а также модель на основе деревьев решений XGBoost. Последняя представляет собой графическую схему, состоящую из вершин (узлов), конечных узлов (листьев) и ребер (ветвей), которые описывают вероятности развития событий. Каждая следующая ветвь разрабатывается так, чтобы исправить ошибку предыдущей, уменьшая среднее отклонение. Это происходит до тех пор, пока ошибка не снизится, либо не выполнится одно из правил ранней остановки.
Для обучения и тестирования моделей политехники выбрали 10 многоквартирных домов, данные для которых за определенный период содержат наименьшее количество пропусков по техническим причинам. Для каждого построили отдельную модель, с использованием которой вычислялись температуры теплоносителя на входе в многоквартирные дома. Затем результаты сравнили с реальными значениями из заданной выборки.
«Максимальное отклонение вычисленной температуры от измеренной в XGBoost составило 4,8 °С, а в линейной модели – 6,1 °С. Это значит, что первая эффективнее, поскольку величина ее ошибки гораздо ниже. Предложенные методы апробированы на реальных данных, что подтверждает возможность их использования при разработке интеллектуальной информационной системы управления теплоснабжением», – комментирует Валерий Столбов, профессор кафедры «Вычислительная математика, механика и биомеханика» ПНИПУ, доктор технических наук.
Ученые ПНИПУ определили наиболее эффективную модель предсказания поведения тепловой сети, которая позволит правильно выбирать управляющее воздействие. Это значительно снизит риск нарушения экологических правил и трату ресурсов на перерасход топлива и электроэнергии, обслуживание и ремонт оборудования.
Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.
Ученые из МФТИ и Национального исследовательского центра «Курчатовский институт» создали первую в своем роде полную классификацию конических сингулярностей в геометрии Минковского. Это фундаментальное достижение в математической физике заполняет пробел, существовавший в общей теории относительности более 60 лет.
Экзопланета K2-18 b недавно прославилась благодаря обнаружению в ее атмосфере гипотетических продуктов жизнедеятельности фитопланктона. В это трудно поверить, в том числе потому, что ее родительская звезда — красный карлик, а такие звезды известны своими экстремальными вспышками. Новые наблюдения показали, что K2-18 отличается необычным спокойствием.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.
Недавно интернет взорвался заголовками: «Симуляция Вселенной невозможна», «Новое исследование полностью опровергает теорию симуляции». Поводом стала статья, авторы которой вознамерились доказать, что мы не живем внутри компьютера. Naked Science объясняет, что не так с этой новостью и можно ли на самом деле доказать, что «матрицы не существует».
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно