Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Синтез углеродных нанотрубок стал в три раза эффективнее
Ученым Сколтеха удалось улучшить самую широко используемую технологию производства одностенных углеродных нанотрубок (ОУНТ) — перспективного материала для изготовления солнечных батарей, светодиодов, гибкой и прозрачной электроники, умного текстиля, оборудования медицинской визуализации, детекторов токсичных газов, систем фильтрации. Исследователи ввели в реактор газообразный водород и монооксид углерода, что позволило увеличить количество получаемых на выходе нанотрубок почти втрое по сравнению с другими стимуляторами роста, причем без потери качества. До недавнего времени низкая производительность процесса не позволяла в полной мере реализовать потенциал этой производственной технологии, которая притом славилась высоким качеством конечного продукта.
Результаты исследования опубликованы в журнале Chemical Engineering Journal. По своей структуре (но не по технологии производства) углеродная нанотрубка представляет собой свернутый в бесшовный полый цилиндр лист графена — плоской сети из атомов углерода с геометрией пчелиных сот. Нанотрубки бывают однослойными или многослойными и имеют различные длину, диаметр и хиральность, то есть степень «смещения» сотового рисунка. Свойства углеродных нанотрубок значительно варьируются в зависимости от перечисленных параметров. Например, от хиральности зависит их электропроводность. Углеродные нанотрубки производят в виде порошка, тонких пленок, волокон или в других формах в зависимости от их предназначения.
Благодаря своим уникальным механическим, электрическим, оптическим и термическим свойствам, углеродные нанотрубки могут использоваться в различных изделиях и технологиях — от устойчивых к износу автомобильных шин и композитных материалов для лопастей ветряков до гибких сенсорных экранов и компонентов литий-ионных аккумуляторов. Одностенные углеродные нанотрубки в виде тонких пленок чаще всего применяются при создании гибких, эластичных, носимых и прозрачных электронных и оптических систем и устройств, таких как лазеры, светодиоды, дисплеи, солнечные элементы, кабели, транзисторы, механические, химические и световые датчики, фильтры для газов и жидкостей, антистатические покрытия и даже средства доставки лекарств.
Основной технологией производства пленочных ОУНТ и большинства других форм углеродных нанотрубок является химическое осаждение из газовой фазы (CVD), которое может выполняться несколькими способами — разными вариантами одного и того же базового технологического процесса. В качестве одного из вариантов технологии производства тонких пленок используют аэрозольный CVD, который позволяет получать нанотрубку в один этап.
В высокотемпературный реактор подается поток газообразного углеродного сырья — углеводородов, монооксида углерода, этанола и др., а также предшественника катализатора, чаще всего предшественника наночастиц железа, например ферроцена. Под воздействием высокой температуры предшественник катализатора распадается на каталитические наночастицы, и происходит разложение источника углерода. Углерод осаждается на поверхности частиц, образуется полусферическая фуллереновая «шапочка», и начинают формироваться нанотрубки. На выходе реактора нанотрубки одновременно фильтруются, образуя на поверхности фильтра 2D-сетку — тонкую пленку ОУНТ.
«Выбор источника углерода обусловлен требованиями, предъявляемыми к свойствам нанотрубок. Например, используя монооксид углерода, можно получить высококачественные нанотрубки, хотя и в весьма ограниченном количестве, но при этом пригодные для использования в оптике и электронике», — рассказывает один из авторов работы, старший преподаватель Сколтеха Дмитрий Красников.
Для решения этой проблемы исследователи обычно используют стимуляторы роста — дополнительные соединения, которые вводятся в CVD-реактор для ускорения роста нанотрубок и повышения каталитической активности и/или увеличения срока службы катализатора. Как правило, в качестве стимуляторов роста используют соединения серы, слабые окислители, такие как углекислый газ или вода, и дополнительные источники углерода. Однако у каждого из этих вариантов есть свои недостатки.
«Существующие решения не обеспечивают существенного повышения эффективности синтеза на основе монооксида углерода. При использовании углекислого газа удавалось повысить производительность в два-три раза, а при использовании монооксида углерода даже добавление серы не давало желаемого результата», — отмечает ведущий автор исследования, выпускник аспирантуры Сколтеха Илья Новиков, недавно с успехом защитивший диссертацию по тематике синтеза нанотрубок.
«В качестве возможного стимулятора роста мы рассмотрели водород. В предыдущих работах было установлено, что ввод водорода в среду монооксида углерода может запустить дополнительную реакцию, в результате которой параллельно с реакцией Будуара [диспропорционирование монооксида углерода в углекислый газ: CO + CO → C + CO2 — гидрогенизация CO: CO + H2 → C + Н2О] образуется углерод. Мы пришли к выводу, что такое решение может сработать и в нашем случае».
Тщательно исследовав влияние водорода на эффективность синтеза ОУНТ, а также изучив свойства полученных на выходе нанотрубок, авторы обнаружили, что при концентрации водорода 10 объемных процентов производительность синтеза выросла в 15 раз без какого-либо ухудшения структурных характеристик и свойств нанотрубок как прозрачного проводника.
«Изучив технологии выращивания нанотрубок методами оптической спектроскопии и электронной микроскопии, а также детально исследовав термодинамику процесса, мы пришли к выводу, что такой замечательный результат удалось получить благодаря гидрогенизации монооксида углерода», — говорит руководитель Лаборатории наноматериалов Сколтеха, профессор Альберт Насибулин.
«Более того, чтобы в деталях объяснить влияние водорода на процесс, мы исследовали различные температурные режимы синтеза нанотрубок, а также различные уровни концентрации водорода», — добавляет Красников. «Неожиданно для себя мы обнаружили два разных феномена: на низкотемпературном режиме водород обеспечивает значительное повышение каталитической активности (активности участвующих в катализе частиц железа), тем самым значительно повышая количество трубок на выходе, а на высокотемпературном режиме он ускоряет рост нанотрубок, что приводит к получению более длинных нанотрубок с более высокой проводимостью пленки».
«Таким образом, в данном исследовании были решены сразу две важные проблемы. С одной стороны, значительно повышена эффективность синтеза, что существенно расширяет возможности применения аэрозольных CVD-процессов на основе монооксида углерода, приближая внедрение этого метода для производства нанотрубок в промышленных масштабах. С другой стороны, в этой работе нам удалось раскрыть принципиальные механизмы роста нанотрубок на основе диспропорционирования монооксида углерода, что чрезвычайно важно для более глубокого понимания процесса CVD-синтеза нанотрубок в целом», — отмечает в заключение профессор Насибулин.
Ученые определили, что люди, населявшие Центральный Кавказ 18–10 тысяч лет назад, использовали для создания орудий охоты камень обсидиан из единственного месторождения — Заюковского. При этом другое популярное сырье — кремень — они добывали из десяти разных источников. Оказалось, что за кремнем оранжевого цвета древним охотникам приходилось путешествовать на расстояния более 200 километров, что указывает на наличие культурных связей с соседними регионами, где в этот период были распространены стоянки той же культурной традиции.
В России создают новые источники микроволнового излучения, изучают сложные квантовые эффекты в полупроводниках, исследуют свойства вещества при сверхвысоких давлениях и многое другое. В этом небольшом тексте мы не сможем затронуть все проводимые исследования в такой большой стране, как наша, и даже упомянуть все институты и университеты, которые ими заняты — но попробуем наметить основные тенденции.
О развитии отечественного приборостроения и перспективах российской микроэлектроники мы поговорили с Виктором Ивановым, член-корреспондентом РАН, директором Института квантовых технологий МФТИ
Американская лунная программа «Артемида» предусматривает экспедиции длительностью от нескольких дней до долгих недель и даже месяцев, но луномобиля для передвижения экипажа по поверхности спутника Земли на сегодня нет. Поэтому космическое агентство США продумывает план действий на случай, если астронавты окажутся далеко от базы и кто-то из них внезапно не сможет идти самостоятельно.
Сражались ли амазонки на территории нашей страны, как развивались первые крупные города и чем древний геном выносливее современного — об этом нам рассказал Харис Мустафин, заведующий лабораторией исторической генетики, радиоуглеродного анализа и прикладной физики МФТИ.
Последние полвека темпы развития науки снижаются. В быту это пока незаметно, потому что от фундаментального открытия до его реализации в технике проходят десятки лет. Но замедление длится слишком долго, то есть вскоре мы столкнемся с замедлением развития техники в целом. Naked Science решил дать перевод видео физика и популяризатора Сабины Хоссенфельдер на эту тему. Что же не так с современной наукой и можно ли что-то исправить?
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Обсерватории постоянно улавливают «мигающие» радиосигналы из глубин Вселенной. Чаще всего их источниками оказываются нейтронные звезды, которые за это и назвали пульсарами. Но к недавно обнаруженному источнику GLEAM-X J0704-37 они, по мнению астрономов, отношения не имеют.
Многие одинокие люди считают, что окружающие не разделяют их взглядов. Психологи из США решили проверить, так ли это на самом деле, и обнаружили общую особенность у людей с недостаточным количеством социальных связей.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии