Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В ИТМО придумали, как увеличить чувствительность сенсоров с левитирующими частицами
Ученые ИТМО изучили, как меняется характер движения одиночной левитирующей микрочастицы, и нашли оптимальное состояние, при котором она становится крайне чувствительной к малым внешним воздействиям. Обнаруженный эффект может лечь в основу чувствительного универсального сенсора, позволяющего проводить точные и быстрые измерения вектора силы тяжести, ускорений и угловых моментов, направленных малых сил. Потенциально такие данные будут полезны в геологоразведке, определении сейсмоактивности и местоположения судов и другого транспорта.
Исследование опубликовано в журнале Physical Review A. Левитирующие оптомеханические системы — устройства, которые позволяют исследовать одиночные нано- или микрочастицы в изоляции от внешних механических воздействий. Частицы буквально левитируют. Этот способ ученые используют для наиболее точного измерения силы, крутящего момента, ускорения, а также исследования фундаментальных законов и принципов физики, например, квантовых состояний и нелинейных процессов.
Этот подход исключает внешние шумы и ненужные воздействия на объект, и тем самым повышает чувствительность системы. Другими словами, нано- или микрочастица чутко улавливает и реагирует на малейшие внешние воздействия. Высокая чувствительность полезна для разных датчиков — например, регистрации высокочастотных гравитационных волн и метрологических исследований. В последние годы левитирующие системы начинают применяться в промышленности в виде компактных, точных и быстрых акселерометров.
Обычно ученые исследуют крошечные частицы, такие как атомарные ионы, так как их динамика описывается простыми уравнениями. При переходе к нано- и микрочастицам в силу вступают нелинейные процессы, при которых слабые внешние «возмущения» приводят к сильному отклику в движении микрочастиц.
«Чем больше энергии подается микрочастице, тем больше становится ее скорость. Но также возрастает нелинейная сила трения, из-за которой микрообъект теряет скорость. Получается замкнутый круг, неустойчивое равновесие. Если добавить слишком много энергии, случится фазовый переход: микрочастица начнет носиться, как заведенная игрушка. Ученые предпочитают избегать сложно описываемые нелинейные эффекты, поэтому изучают динамику крупных частиц в вакуумных условиях, где нет потери энергии. Но мы рассмотрели проблему с другой стороны: если есть нелинейный процесс, значит, в какой-то момент микрочастица станет очень чувствительной к внешним воздействиям. Вместо того, чтобы отказаться от сложностей, мы решили изучить их и в перспективе использовать для создания более чувствительного сенсора», — рассказал руководитель исследования, старший научный сотрудник лаборатории «Нелинейная оптика конденсированных сред» международного научно-образовательного центра физики наноструктур ИТМО Дмитрий Щербинин.
В прошлой работе исследователи ИТМО изучили нелинейную динамику одиночной микрочастицы, которая левитирует в воздухе в квадрупольной ловушке, и выделили два режима движения — линейный (колебания с малой амплитудой) и нелинейный (движение микрообъекта по ромбовидной траектории).
В новом исследовании ученые впервые рассмотрели, как именно происходит фазовый переход между линейным и нелинейным режимом движения, и нашли оптимальное состояние, при котором микрочастица становится крайне чувствительной к малым внешним возмущениям.
Разные режимы движения микрочастицы можно представить на примере студентов, которые пишут контрольную работу, и преподавателя, следящего за порядком. Пока преподаватель в аудитории, студенты ведут себя тихо. Это линейный режим с низкой амплитудой — частица колеблется вблизи центра ловушки с небольшой амплитудой. Когда преподаватель на что-то отвлекся, студенты начали передавать записки. В физическом мире линейный режим остался, но амплитуда движения немного увеличилась.
Если преподаватель покинул аудиторию, студенты стали шуметь и громко обсуждать задачи. Это нелинейный режим — амплитуда движения микрочастицы увеличилась на несколько порядков, и она начала двигаться по ромбовидной орбите с радиусом близким к размерам самой ловушки. Между линейным и нелинейным режимами случилось внешнее возмущение (преподавателя вызвал директор), которое привело к постепенному изменению режима — фазовому переходу.
«Мы исследовали поведение левитирующей микросферы диоксида кремния на границе фазового перехода. Мы определили четыре характерных динамических состояния движения и выяснили, что микрообъект наиболее чувствителен вблизи фазового перехода, так как его движение становится неустойчивым и резонансным. В спектре колебаний появляются новые частоты, амплитуда которых быстро усиливается.
Поэтому даже малейшее внешнее воздействие заметно отражается на амплитуде движения и на спектре частот, и из-за этого микрочастица становится очень чувствительной. Мы показали, что даже небольшое воздействие на систему с использованием лазерного излучения может столкнуть систему в нелинейный режим», — объяснил первый автор исследования, младший научный сотрудник лаборатории «Нелинейная оптика конденсированных сред» международного научно-образовательного центра физики наноструктур ИТМО Вадим Рыбин.
По словам исследователей ИТМО, для любой микрочастицы сферической формы с собственным электрическим зарядом можно рассчитать параметры, которые приведут ее к фазовому переходу и придадут ей повышенную чувствительность. Также можно измерить любое внешнее воздействие вне зависимости от его природы — электрическое, магнитное, оптическое и гравитационное поле. На основе эффекта, впервые рассмотренного исследователями ИТМО, возможно создать универсальный сенсор с высокой чувствительностью. Его можно будет использовать для точной геологоразведки, определения сейсмоактивности и местоположения судов, где недостаточно хорошо работает GPS-навигация, например в Арктике.
Сейчас физики ИТМО продемонстрировали фазовый переход микрочастицы в эксперименте. В дальнейшем они планируют разработать математическую модель, которая будет предсказывать и описывать возникающие в работе эффекты, и на ее основе создать универсальный сенсор для калибровки чувствительности измерительных приборов на разных типах взаимодействия.
Исследование поддержано грантом Фонда развития теоретической физики и математики «БАЗИС».
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Объединить конфликтующие свойства помогли квазичастицы со специфическим зарядом. Если удастся подтвердить предложенную теорию экспериментом, то перед нами — новый тип квантовых материалов.
Группа исследователей опровергла классическую теорию о случайности вымирания видов на примере морских хищников. Анализ эволюции акул и скатов за последние 145 миллионов лет показал, что риск исчезновения вида напрямую зависит от времени его существования: «новички» погибают гораздо чаще, чем эволюционные долгожители. Кроме того, ученые установили, что знаменитый астероид, погубивший динозавров, нанес океану не такой сильный удар, как последующее изменение климата.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Экологическое состояние морей, омывающих развитые и развивающиеся страны, — давняя проблема, о которой говорят ученые. Авторы нового исследования выявили в Средиземном море пещеры с рекордным количеством мусора.
Исследователи доказали, что влияние больших сделок на рынок описывается квадратичной зависимостью. Основой для анализа стали данные Токийской биржи.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
