• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
22.03.2023, 15:04
ФизТех
2
12 432

Российские ученые узнали, как сделать водород металлическим

❋ 5.1

Ученые МФТИ и ОИВТ РАН создали модель кинетики образования металлического водорода во флюидном состоянии.

Российские ученые узнали, как сделать водород металлическим / ©Getty images / Автор: Ольга Кузьмина

Работа опубликована в журнале ChemPhysChem. Водород — самый распространенный элемент во Вселенной. В обычных условиях он представляет собой газ. Если его сжать давлениями в тысячи атмосфер, то можно получить сначала жидкость, а потом и твердое тело, которому, вероятно, будут присущи уникальные свойства сверхпроводимости. Несмотря на это, поведение водорода при высоких давлениях до сих пор остается слабо изученным. Хорошо известны экспериментальные модели, которые используются, например, в астрофизике для объяснения строения ядра Юпитера: жидкий водород внутри планет-гигантов при достаточно высоких давлениях становится металлическим, что влияет на их магнитные поля.

При этом теоретической модели перехода водорода в это состояние до сих пор нет, и глубина металлического слоя в планетах-гигантах остается загадкой. Лаборатории во многих странах изучают процесс перехода водорода в плазму/металл. Однако различные экспериментальные и теоретические методы не дали согласованных результатов. Попытка объяснить этот переход стала своего рода испытательной площадкой для новых методов теоретической и вычислительной физики. Ученые МФТИ решили посмотреть на загадочный процесс с самого зарождения плазменно/металлической фазы: разработали модель появления первого плазмоподобного кластера, ведущего к образованию плазмы в плотном флюиде водорода и построили многоступенчатый механизм перехода, что позволяет согласовать существующие сегодня противоречия в результатах экспериментальных исследований.

Установка для нагрева сжатого в алмазной наковальне образца водорода (из обзора Silvera & Dias // Advances in Physics — 2021) / ©Пресс-служба МФТИ
Установка для ударного сжатия дейтерия (из работы Knudson M. D. et al. // Science — 2015) / ©Пресс-служба МФТИ

Возможность создания в лабораторных условиях металлического водорода занимает умы ученых уже не одно десятилетие. Предполагается, что он может обладать сверхспособностями, например высокотемпературной сверхпроводимостью, и его применение способно вывести на другой качественный уровень разработки в электротехнике, энергетике и ракетостроении. Начиная с 1990-х годов загадочный переход плотного флюида водорода в металл/плазму интенсивно исследуется в экспериментах.

Для этого экспериментаторы используют очень большие установки: взрывные эксперименты проводятся в Сарове, лазерные эксперименты со сверхмощными лазерами и ультракороткими импульсами тока — в США: в Ливерморской лаборатории — на National Ignition Facility, а в Сандийских лабораториях — на Z-машине. В то же время интересные результаты удается получать и на «настольных» установках с алмазными наковальнями, как это делает группа профессора Исаака Сильверы из Гарварда. Однако по-прежнему различные эксперименты дают совершенно разные пороговые параметры для перехода плотного флюида водорода в плазменное (металлическое) состояние.

Отметим, что отличия между металлической жидкостью и плазмой достаточно условны: плазма — это более горячее состояние, жидкий металл — более холодное, и в обоих состояниях есть свободные электроны, которые проводят электрический ток. Еще в 30-х годах XX века великий физик-теоретик Юджин Вигнер предсказал, что при низких температурах в водороде присутствует область, в которой он становится твердым и превращается в металл, и сейчас эту фазу с большим интересом изучают во всем мире. Таким образом, ученые продвинулись в нескольких направлениях, но ни в одном не пришли пока к однозначному результату.

Поверхности электронной плотности однократно заполненных верхних электронных орбиталей, образующих экситон, и центры Ваннье этих орбиталей (из статьи в журнале Письма в ЖЭТФ) / ©Пресс-служба МФТИ

«К 2017 году, когда мы начали заниматься этой проблемой, обсуждались две основные модели перехода плотного флюида водорода в плазму. Первая заключалась в том, что молекулярный водород распадается и образует плазму. Однако в этом случае многое не было понятно, например появляется в процессе атомарный водород или нет. Вторая гипотеза заключалась в том, что водород при нагреве/сжатии постепенно переходит из полупроводникового состояния в металлическое при постепенном уменьшении ширины запрещенной зоны.

При этом ни одна, ни другая гипотеза не могли объяснить такого большого разброса температур и давлений перехода и всего множества наблюдаемых в экспериментах эффектов. Третьим подходом, развиваемым в нашем коллективе, была модель метастабильных состояний при плазменном фазовом переходе. Однако в нашей работе мы решили пойти еще дальше и вообще отказаться от концепции термодинамического равновесия», — рассказывает Илья Федоров, один из авторов исследования, научный сотрудник ОИВТ РАН и лаборатории суперкомпьютерных методов в физике конденсированного состояния МФТИ.

Схема механизма перехода молекулярного плотного нагретого водорода в плазму / ©ChemPhysChem

Поскольку к 2017 году накопилось уже достаточно много расчетов и экспериментов, которые так и не дали единой картины перехода, было очевидно, что необходим новый взгляд на проблему, новый метод, способный учесть новую физику и новые эффекты. Ученые МФТИ решили использовать метод волновых пакетов в формулировке electron force field (eFF). Поясним, в чем его суть. Исследования перехода ведутся не для твердого молекулярного водорода, а для флюида, плотной молекулярной жидкости, преобразующейся в плазму, где есть свободные электроны.

Представление электрона в виде волнового пакета позволяет сохранить в модели эффекты связи электронной и ионной подсистем. Расчеты показали, что именно возбужденная электронная подсистема является «спусковым крючком», триггером перехода молекулярного флюида водорода в плазму. Дальше этот полученный в модели eFF эффект нужно было проверить более точными квантово-механическими методами расчетов.

«Почему мы отнеслись к этому новому эффекту серьезно, ведь раньше такой эффект не был описан в литературе? Дело в том, что наиболее популярным методом квантовых расчетов в физике конденсированного состояния является теория функционала плотности в ее конечно температурной формулировке. Эта теория хорошо себя показала во множестве областей и позволяет рассматривать материалы при различных плотностях и температурах. Однако водород, несмотря на свою максимальную простоту, при больших давлениях уже совершенно не так прост.

При больших плотностях расстояние между молекулами становятся того же порядка, что и расстояние между атомами внутри молекул. В результате вся система становится чем-то средним между обычной жидкостью и одной большой молекулой со множеством протонов и электронов. В таких условиях предположение о независимости динамики электронов и динамики ядер (то есть адиабатическое приближение) может быть неверным. А именно, это приближение лежит в основе конечно температурной формулировки теории функционала плотности», — подчеркивает Владимир Стегайлов, заведующий отделом ОИВТ РАН и лабораторией суперкомпьютерных методов в физике конденсированного состояния МФТИ.

«Поставив цель изучить обнаруженный эффект подробнее, мы сделали расчеты квантовой молекулярной динамики в первом возбужденном синглетном состоянии. И обнаружили эффект диссоциации экситонов в молекулярной фазе», — рассказывает Илья Федоров. Диссоциация экситонов — это фундаментальный микроскопический процесс эволюции электронных возбуждений в материалах. Экситон — это связанное состояние электрона и дырки. Обычно экситоны образуются в твердых телах или в двумерных материалах под действием лазерного облучения. Авторам работы удалось показать, что в плотном флюиде молекулярного водорода экситоны образуются спонтанно, а их диссоциация является механизмом, объясняющим эксперименты по переходу молекулярного флюида в плазму. На основе этой концепции авторами был сформулирован многоступенчатый механизм перехода.

Упрощенная фазовая диаграмма с различными экспериментальными точками и полученной кривой диссоциации экситона (черная пунктирная линия) / ©ChemPhysChem

«Вначале мы имеем флюид молекулярного водорода, в котором по мере нагрева все чаще и чаще электроны спонтанно возбуждаются в результате вибронного переноса энергии от ядер к электронам (то есть возникают экситоны — электрон-дырочная пары), но затем эти возбуждения переходят обратно в основное состояние (I), потом в определенный момент экситон успевает диссоциировать до момента обратной рекомбинации (II) и уже не может перейти обратно. Этот процесс отнимает кинетическую энергию у протонов (в экспериментах при этом наблюдается плато температуры при постепенном увеличении энерговклада, красные точки на фазовой диаграмме).

Таким образом, у нас появляется “зародыш плазмы” в виде связанного кластера двух электронов и двух протонов, поскольку таких процессов в флюиде водорода в экспериментальных условиях происходит множество, то начинает расти плазмоподобная фаза в виде отдельных изолированных кластеров, которые сначала начинают поглощать свет (зеленые точки на фазовой диаграмме), а затем (III), когда размеры кластеров становятся соизмеримы с длиной волны пробного лазерного импульса, начинают отражать (синие точки на фазовой диаграмме). В итоге весь флюид переходит в плазму (IV), когда в экспериментах наблюдают рост электрической проводимости (фиолетовые точки на фазовой диаграмме)», — объясняет Илья Федоров.

На фазовой диаграмме показаны различные экспериментальные точки перехода, полученные начиная с 1996 года, при этом, как уже упоминалось, выше разным цветом отражены разные по типу экспериментальные наблюдения. Параметры обнаруженной учеными МФТИ диссоциации одиночного экситона показаны черной кривой, которая хорошо согласуется с наблюдаемым переходом в алмазных наковальнях (красные точки).

Таким образом, различные фазы построенного механизма способны объяснить разные эффекты, наблюдаемые в экспериментах. А неадиабатическая динамика электронов, лежащая в основе механизма и не учтенная в других теоретических работах, позволяет объяснить экспериментальные разногласия различной кинетикой процесса возникновения плазменноподобных кластеров.

«Мы впервые использовали квантово-механический метод расчета для описания возникновения плазменноподобных кластеров в микрообъеме плотного флюида молекулярного водорода, что позволило нам построить модель, которая описывает физический механизм данного перехода. Таким образом, мы получили возможность по-новому посмотреть на всю совокупность проводимых экспериментов и сформулировали новую качественную картину явления, гармонизирующую существенные противоречия в экспериментальных результатах. Новая модель показала, что из-за разной скорости и разных условий в итоге выходят разные параметры перехода, детектируемые экспериментально. В определенном смысле мы получили индульгенцию, позволившую нам отказаться от равновесной термодинамической трактовки экспериментальных данных.

Все проводимые эксперименты верны, но для их интерпретации необходимо взглянуть на явление под другим углом. Эксперименты дают нам количественные цифры давления и температуры, при которых должен происходить переход. Но благодаря предложенной модели в перспективе можно будет описать сжатие водорода в конкретных условиях и в конкретных экспериментах и предсказать, в какие моменты времени он сможет начать проводить электрический ток. Возможно, подобные модели можно будет использовать и в физике твердого тела и двухмерных структур, например для прояснения принципов работы элементов неорганических и органических солнечных батарей», — подводит итог Владимир Стегайлов. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
18 октября, 11:06
Evgenia Vavilova

Число несущих их клеток не просто увеличивается, механизм отбора связан с эволюционным преимуществом половых клеток. Узнать об этом помог улучшенный метод секвенирования ДНК.

18 октября, 10:18
Редакция Naked Science

Еще в 2020 году Россия отставала по квантовым технологиям от лидеров на 10 лет. Квантовые вычисления, квантовые коммуникации и квантовые сенсоры — все это, казалось, вскоре войдет в практику везде, но не у нас. В 2025-м ситуация уже изменилась: в области квантовых вычислений страна вошла в число лидеров квантовой гонки. Как это удалось и каких практических результатов можно ждать?

18 октября, 10:37
Юлия Трепалина

В апреле 2025 года у побережья израильского города Хадера произошла трагедия: мужчину, который плавал с маской и трубкой в нескольких десятках метров от берега, растерзали акулы прямо на глазах у людей на пляже. Морские биологи по видео и рассказам очевидцев восстановили вероятный ход тех событий и объяснили, какие обстоятельства могли спровоцировать коллективную атаку акул.

15 октября, 15:34
Адель Романова

Еще до официального открытия объект 3I/ATLAS попадал в поле зрения обсерваторий, и недавно эту межзвездную комету рассмотрели на архивных изображениях с космического телескопа TESS. На этих снимках у нее не оказалось комы. Тем не менее астрономы уверены, что комета должна была быть активной уже тогда.

17 октября, 22:00
Любовь С.

В густой оранжевой дымке Титана, где температура опускается до минус 180 градусов Цельсия, происходят невозможные по земным меркам химические реакции: молекула циановодорода (HCN), рожденная в атмосфере из азота, метана и этана, могла сформировать кристаллы, объединяющие вещества противоположной природы.

15 октября, 11:16
ПНИПУ

16 октября отмечается Всемирный день хлеба – продукта, который вносит значимый вклад в ежедневную жизнь и питание людей. Ученые Пермского Политеха рассказали, почему белый портится быстрее ржаного, нужно ли убирать глютен из рациона, на какие полезные виды муки заменить пшеничную, какие подойдут веганам, диабетикам и аллергикам и как правильно хранить мучные изделия.

20 сентября, 08:52
Александр Березин

Посадка, включая выгорание куска степи, прошла штатно, но часть грызунов на борту погибли. Правда, погубила их не повышенная космическая радиация полярной орбиты, влияние которой на млекопитающих планировали выявить в миссии, а более банальные причины.

13 октября, 11:10
Илья Гриднев

Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.

26 сентября, 11:41
ИИМК РАН

Археологи Института истории материальной культуры РАН (ИИМК РАН), при поддержке фонда «История отечества» в ходе раскопок обнаружили на всемирно известной стоянке каменного века Костенки-17 в Воронежской области редчайшие украшения из зубов песца и окаменелой раковины, а также уникальный для этого времени нуклеус из бивня мамонта для снятия заготовок.

[miniorange_social_login]

Комментарии

2 Комментария
1 2
19.06.2024
-
0
+
Какое достижение российских учёных! Вот это повод для гордости! А вот эта фраза звучит как-то не очень убедительно >Отметим, что отличия между металлической жидкостью и плазмой достаточно условны: плазма — это более горячее состояние, жидкий металл — более холодное, и в обоих состояниях есть свободные электроны, которые проводят электрический ток Всё-таки в жидком метале есть ближний порядок частиц, а коллективных взаимодействий как в плазме нет
Kiridan
23.03.2023
-
0
+
Я не очень понимаю, как они намерены использовать его в электронике. Разве при декомпрессии он не начнёт переходить обратно в газообразное состояние?
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно