Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Российские ученые научили искусственный интеллект анализировать эмоции участников онлайн-мероприятий
Исследователи НИУ ВШЭ предложили новый нейросетевой метод распознавания эмоций и вовлеченности людей. Алгоритмы строятся на основе анализа видеоизображений лиц и превосходят по точности известные аналоги. Разработанные модели подходят для малопроизводительного оборудования, в том числе для мобильных устройств. Результаты работы могут быть внедрены в системы теле-конференц-связи и онлайн-обучения для анализа вовлеченности и эмоций участников.
Итоги исследования опубликованы в IEEE Transactions on Affective Computing. Пандемия Covid-19 привела к активному развитию инструментов онлайн-видео-конференц-связи и систем электронного обучения (e-learning). Технологии искусственного интеллекта могут помочь преподавателям дистанционно контролировать вовлеченность участников мероприятия. Сейчас алгоритмы анализа поведения студентов и выявления вовлеченности в онлайн-среде изучают специалисты в области интеллектуального анализа данных для образования.
Среди инструментов анализа наибольшей популярностью пользуются автоматические методы, основанные на технологиях компьютерного зрения. В частности, считается, что на качество многих e-learning-систем большое влияние может оказать распознавание эмоций и вовлеченности участников на основе видеоаналитики.
В рамках проекта Центра искусственного интеллекта НИУ ВШЭ «Нейросетевые алгоритмы анализа динамики эмоционального состояния и вовлеченности учеников на основе данных видеонаблюдения» ученые разработали новый нейросетевой алгоритм распознавания эмоций и вовлеченности по видеоизображениям лиц.
Ученые научили нейронную сеть извлекать характерные признаки эмоций, основываясь на специальном «устойчивом» способе обучения нейронной сети и обработке только наиболее важных областей лица. Суть метода в том, что сначала осуществляется детектирование лиц и извлечение их характерных признаков с последующей группировкой лиц каждого участника.
Далее с помощью специально обученных эффективных нейросетевых моделей извлекаются эмоциональные признаки каждого выделенного лица, они агрегируются с помощью статистических функций и классифицируются. На заключительном этапе идет визуализация фрагментов видеоурока с наиболее ярко выраженными эмоциями и различными степенями вовлеченности каждого слушателя. В результате исследователям удалось создать новую модель, которая сразу для нескольких лиц на видео определяет эмоции каждого человека и степень его увлеченности.
«Для нескольких наборов данных мы показали, что предложенные алгоритмы превосходят по точности известные аналоги. При этом, в отличие от большинства известных технологий, разработанные модели могут участвовать в обработке видео в режиме реального времени даже на малопроизводительном оборудовании, в том числе на мобильных устройствах каждого участника онлайн-мероприятия», — комментирует руководитель проекта, профессор кафедры информационных систем и технологий НИУ ВШЭ в Нижнем Новгороде Андрей Савченко.
— Совместно с Ильей Макаровым из Научно-исследовательского института искусственного интеллекта (AIRI) мы создали достаточно простую в использовании компьютерную программу, позволяющую обработать видеозапись вебинара или онлайн-занятия и получить набор видеоклипов с наиболее характерными эмоциями каждого участника».
Результаты работы могут быть внедрены в системы теле-конференц-связи и онлайн-обучения для анализа вовлеченности и эмоций участников. Так, в ходе предварительного тестирования онлайн-курса по реакции слушателей можно понять, какие части лекции были наиболее интересны, а что оказалось трудным для понимания и нуждается в корректировке. В настоящий момент проводятся исследования по возможностям интеграции разработанных моделей в сервис видеоконференций Jazz by Sber. Планируется выполнить разметку видеоданных для повышения точности анализа поведения слушателей онлайн-мероприятий.
Исследование НовГУ показало, что атлетическая гимнастика — один из самых эффективных способов борьбы с ожирением, в отличие, например, от бега. Тренировки с отягощениями не только помогают сжечь жир, но и укреплять мышцы, при этом щадя суставы и сердечно-сосудистую систему. Назван и оптимальный комплекс упражнений для таких людей: три силовые тренировки в неделю по 40–90 минут.
Специалисты центра изучения недр «Геосфера» извлекают из образцов грунта все необходимые данные о действующих и перспективных месторождениях нефти. Рутинные операции с керном делегированы роботам. Умные помощники трудятся 24/7 и позволяют исследователям сосредоточиться на научных и технологических задачах.
Международная группа физиков из России (включая ученых ТГУ), Казахстана и Японии экспериментально зафиксировала необычное явление: стрела, движущаяся прямолинейно, оставляет за собой след в форме винтовой спирали. Это противоречит классическим представлениям, но было подтверждено в эксперименте с переходным излучением. Открытие меняет существующие взгляды на природу закрученного света и имеет значительные перспективы как для фундаментальных исследований, так и для прикладных технологий.
Исследование НовГУ показало, что атлетическая гимнастика — один из самых эффективных способов борьбы с ожирением, в отличие, например, от бега. Тренировки с отягощениями не только помогают сжечь жир, но и укреплять мышцы, при этом щадя суставы и сердечно-сосудистую систему. Назван и оптимальный комплекс упражнений для таких людей: три силовые тренировки в неделю по 40–90 минут.
Специалисты центра изучения недр «Геосфера» извлекают из образцов грунта все необходимые данные о действующих и перспективных месторождениях нефти. Рутинные операции с керном делегированы роботам. Умные помощники трудятся 24/7 и позволяют исследователям сосредоточиться на научных и технологических задачах.
Международная группа физиков из России (включая ученых ТГУ), Казахстана и Японии экспериментально зафиксировала необычное явление: стрела, движущаяся прямолинейно, оставляет за собой след в форме винтовой спирали. Это противоречит классическим представлениям, но было подтверждено в эксперименте с переходным излучением. Открытие меняет существующие взгляды на природу закрученного света и имеет значительные перспективы как для фундаментальных исследований, так и для прикладных технологий.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии