Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Разработка Пермского Политеха позволит создавать более качественные изделия аддитивным методом
Аддитивное производство реализует послойное формирование изделия путем добавления материала к основе. 3D-печать используют в производстве крупногабаритных деталей для строительства, космической отрасли и многих других. Один из перспективных методов 3D-печати — оплавление материала электронным лучом. При аддитивном производстве возникает необходимость контролировать процесс наплавки, чтобы уменьшить вероятность печати бракованных изделий. Для этого во время наплавки изделия происходит процесс восстановления цифрового образа наплавляемой детали. Ученые Пермского Политеха предложили метод восстановления цифровой модели детали на основе анализа сигнала тормозного рентгеновского излучения.
Статья с результатами исследования опубликована в журнале «Дефектоскопия». Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований совместно с Пермским краем и Минобрнауки России в рамках реализации национального проекта «Наука и университеты».
Наплавка детали электронно-лучевым методом достаточно длительный процесс, требующий непрерывного внимания оператора. С целью добиться полноценного контроля над процессом наплавки, ученые, параллельно с наплавкой, восстанавливают цифровую модель детали и в режиме реального времени сравнивают саму деталь и ее цифровой образ.
Процесс восстановления детали происходит с помощью анализа сигналов от процессов излучения, сопутствующих наплавке, таких как световое, тепловое, рентгеновское излучение. Как раз системы контроля, основанные на регистрации сигнала рентгеновского излучения с помощью специальных датчиков, являются наиболее перспективными. По отклику рентгеновского излучения ученые восстанавливают вид цифровой модели детали.
«Например, у нас спрятан объект неизвестной формы в некой непрозрачной субстанции, и у нас нет никакой возможности посмотреть на этот предмет, а нам необходимо узнать его параметры. Чтобы восстановить неизвестную информацию мы можем пробивать скрывающую объект субстанцию инфракрасными, аудио и другими сигналами измеряя отклик, чтобы по данным значениям построить примерное представление о неизвестном предмете. Самый простой пример – когда сверкнула молния, и мы считаем секунды до того, как прогремит гром, чтобы рассчитать расстояние от нас до центра грозы – мы по вторичным признакам ищем параметр. Здесь же мы измеряем отклики рентгеновского излучения и по ним смотрим – какая форма валика наплавки, нет ли дефектов», — объясняет кандидат физико-математических наук Пермского Политеха, доцент кафедры «Высшая математика» Елена Кротова.
При взаимодействии электронного луча с материалом электроны, в результате торможения, теряют свою энергию. Так возникает рентгеновское излучение, локализованное в месте взаимодействия электронного луча с обрабатываемым материалом. Данные, полученные с датчика рентгеновского излучения, обрабатываются с помощью математического алгоритма восстановления поверхности. В результате решения задачи политехники пробуют данный метод восстановления поверхности детали на примере трех типов симметричных объектов: гауссова поверхность, полусфера, цилиндр. При сравнении восстановленных поверхностей с теми, которые должны получиться, результат был положительный, объекты соответствовали друг другу.
«Построенная методика основана на подходе «встреча посередине». Мы решаем прямую задачу – каким должен быть отклик в случае определенного набора поверхностей, и, навстречу, решаем обратную задачу – по отклику пытаемся восстановить вид поверхности», — поделилась ученая. Полученные результаты могут использоваться для разработки систем оперативного контроля над процессом электронно-лучевой наплавки по известному распределению тормозного рентгеновского излучения, полученному из технологической зоны. Метод ученых ПНИПУ позволит создавать качественные изделия технологией трехмерной печати, которые востребованы при создании прототипов, совершенствовании объемных физических моделей сложных математических поверхностей.
Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.
Ученые впервые смогли создать видимый в оптическом диапазоне темпоральный кристалл. Для этого они использовали жидкие кристаллы.
Для разрыва связи между атомами водорода понадобились золото, титан и ультрафиолетовое излучение. Полученный водород ученые использовали для преобразования углекислого газа в этилен.
Для разрыва связи между атомами водорода понадобились золото, титан и ультрафиолетовое излучение. Полученный водород ученые использовали для преобразования углекислого газа в этилен.
Ученые впервые смогли создать видимый в оптическом диапазоне темпоральный кристалл. Для этого они использовали жидкие кристаллы.
В данных космического телескопа «Джеймса Уэбба» ученые обнаружили объект, который может оказаться галактикой, сформировавшейся всего через 90 миллионов лет после Большого взрыва. Если открытие подтвердится, она станет абсолютным рекордсменом, побив рекорд предыдущего чемпиона почти на 200 миллионов лет. Однако исследователи осторожны — загадочный сигнал может иметь и другое, не менее интересное объяснение.
Недавнее появление в Солнечной системе межзвездного объекта 3I/ATLAS вызвало новую волну обсуждения вопроса о том, как отличить комету или астероид от внеземного космического корабля либо другого артефакта, не созданного человечеством. Астрономы рассказали, что у искусственного объекта могут быть четыре характерные особенности.
Влияет ли формат знакомства на качество последующих романтических отношений в паре? Научные данные на этот счет разнятся. Новое исследование по вопросу представила группа психологов из Польши, Австралии и Великобритании. В попытке понять, при каком сценарии удовлетворенность отношениями выше, а любовь крепче — когда двое нашли друг друга в Сети или познакомились в жизни, — ученые опросили свыше 6000 тысяч человек из разных стран.
Глубоководная жизнь нам, сухопутным, кажется инопланетной. В недавней экспедиции морские биологи погрузились на дно пятого по глубине Курило-Камчатского желоба. Они преодолели 9500 метров толщи воды и встретили удивительно богатые сообщества организмов, живущих благодаря хемосинтезу. Тысячи километров дна покрывает беспозвоночная жизнь, которая питается благодаря бактериям, окисляющим метан. Naked Science поговорил с одним из авторов исследования.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии